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Abstract. Although the Miller-Rabin test is very fast in practice, there
exist composite integers n for which this test fails for 1/4 of all bases
coprime to n. In 1998 Grantham developed a probable prime test with
failure probability of only 1/7710 and asymptotic running time 3 times
that of the Miller-Rabin test. For the case that n ≡ 1 mod 4, by S. Müller
a test with failure rate of 1/8190 and comparable running time as for
the Grantham test was established. Very recently, with running time
always at most 3 Miller-Rabin tests, this was improved to 1/131040, for
the other case, n ≡ 3 mod 4. Unfortunately the underlying techniques
cannot be generalized to n ≡ 1 mod 4. Also, the main ideas for proving
this result do not extend to n ≡ 1 mod 4.
Here, we explicitly deal with n ≡ 1 mod 4 and propose a new probable
prime test that is extremely efficient. For the first round, our test has
average running time (4 + o(1)) log2 n multiplications or squarings mod
n, which is about 4 times as many as for the Miller-Rabin test. But
the failure rate is much smaller than 1/44 = 1/256. Indeed, for our
test we prove a worst case failure probability less than 1/1048350.
Moreover, each iteration of the test runs in time equivalent to only 3
Miller-Rabin tests. But for each iteration, the error is less than 1/131040.

Keywords: Probable Prime Testing, Error Probability, Worst Case
Analysis, Quadratic-Field Based Methods, Combined Tests

1 Introduction

1.1 Motivation

Large prime numbers are essential for most cryptographic applications. Perhaps
the most common probabilistic prime test is the Strong Fermat Test (Miller-
Rabin Test), which consists of testing that as ≡ 1, resp. a2js ≡ −1 mod n for
some 0 ≤ j ≤ r − 1 where n − 1 = 2rs with s odd. Although exponentiation
modulo n can be performed extremely fast, the catch with this, as with any
probable prime test, is the existence of pseudoprimes. This means that certain
composite integers are identified as primes by the test.
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In a typical cryptographic scenario, some of the involved parties may be ma-
licious. If an adversary manages to sell composites as primes, this usually com-
promises the security of the corresponding protocol. As strong pseudoprimes can
easily be constructed this often allows fooling a pseudoprimality testing device
that utilizes Miller-Rabin only. As an example, strong pseudoprimes are known
with respect to all forty-six prime bases a up to 200 [3]. While a composite
number can be a strong pseudoprime for at most 1/4 of all bases coprime to n,
there exist composites that actually do pass for this largest possible bound of
the 1/4 bases. Moreover, such numbers can efficiently be characterized and con-
structed [9]. Although it is known that a = 2 is a witness (for the compositeness
of n) for most odd composites, it was shown in [2] that there are infinitely many
Carmichael numbers whose least witness is larger than (log n)1/3 log log log n.
Also, it is conjectured [2] that there are x1/5 Carmichael numbers n ≤ x for
which there is no base a in any given set of 1

11 log x distinct integers ≤ x that
proves n composite by the Miller-Rabin test.

While Miller-Rabin works well for any average number n on input a random
base a, due to the fact that pseudoprimes can be constructed, the cautious might
want to minimize the chance of being sold a composite instead of a prime.

There exist a number of deterministic algorithms for primality testing (see
e.g., [7,10,12,20,32]), which however require rather involved theory and imple-
mentation. The advantage with pseudoprimality testing still is, that these ap-
proaches are a lot faster and can much more easily be realized in practice.

The result of this paper is a new probable prime test which is considerably
more reliable than the previous proposals, but which still is much easier to
describe and implement than the deterministic tests.

1.2 The Proposed Test

The main ideas for the pseudoprimality tests [16,26,28] consist of a combined
Miller-Rabin test by utilizing both, the original Fp-based algorithm, as well as
the quadratic field (QF )- based analogue. An additional testing criterion in [26,
28] is based on the underlying (Cipolla related) square root finding algorithm
modulo primes p (Lemma 1 below). If the result is not a correct root modulo n,
n is disclosed as composite. Otherwise, this gives an additional testing condition.

Here, we incorporate yet another root-finding algorithm when n ≡ 1 mod 4.
This constitutes a counterpart to the very recent results in [28] for n ≡ 3 mod 4
(the easier case). Via some efficient algorithm we test for what should be a square
root of some Q mod n,

(
Q
n

)
= 1. This automatically constitutes a strengthened

version of a Miller-Rabin Test. Consecutively, we test for the square root of 1
in the quadratic extension. We show how the root finding part can be obtained
with low cost, with simultaneously obtaining a speed-up for the evaluation of
the QF -part, as well as a reduction of the failure rate.

In essence, the test for any n ≡ 1 mod 4 runs as follows. We incorporate the
same trivial testing conditions in our precomputation as does Grantham, [16].
Also, as in [16], we assume that n is not a perfect square.
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0. (Precomputation)
– If n is divisible by a prime up to min {B,

√
n}, where

B = 50000, declare n to be composite and stop.
– If

√
n ∈ Z declare n to be composite and stop.

1. (Parameter Selection)

Select randomly P ∈ Zn, Q in Z
∗
n such that

(
Q
n

)
= 1,

(
D
n

)
= −1.

2. (Square Root Part)
– Run one of the square root finding algorithms of sect. 2.3

for the root of Q modulo n.
If the root finding algorithm declares n composite, stop.

– Let a be the root of Q obtained, and let P ′ ← P/a mod n.
3. (QF-Based Part)

– Let α(P ′, 1), α(P ′, 1) be the roots of x2 − P ′x+ 1.
– Test, if α(P ′, 1)(n+1)/2 ≡ α(P ′, 1)(n+1)/2 mod n.

// For efficient practical realization see sect. 3.1.
If not, n is composite and stop.

– Compute gcd(α(P ′, 1)(n+1)/2 ± 1, n). If one of these reveals a
proper factor of n, output the factor. Otherwise declare n
to be a probable prime.

The above describes the first round of the test. When being iterated, some
of the calculations can be done more efficiently (see sect. 3.3).

1.3 The Results of This Paper

The main result of this paper is the following theorem. As in [16], one selfridge
is equivalent to the time required for one round of Miller-Rabin.

Theorem 1. A composite integer n ≡ 1 mod 4 passes k iterations of the pro-
posed test with worst case failure probability less than 1/1048350 · 1/131040k−1,
which is approximately 1/217k+3.

For k iterations, the above test has average running time 3k + 1 selfridges.

In detail, the result can be stated as follows.

• For one round of the proposed test, the exact failure is less than 1/220 +
1/(2 ·B2) < 1/1048350 and the average running time is 4 selfridges.

• For each additional iteration, the proposed test has worst case failure prob-
ability 1/217 + 4/B2 < 1/131040 and average running time 3 selfridges.

The first round failure rate should be contrasted to the worst case error
probability 1/256 of four iterations of the Miller-Rabin test. For two iterations
of the proposed test this is 1/(1.37·1011), opposed to 1/16384, for three iterations
1/(1.8 · 1016) opposed to 1/1048576, etc.

The estimate is based on worst case analysis and on the assumption of the
existence of special (bad) composites. Otherwise, the result would even be better.
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The number of pairs that pass the proposed test (so-called ‘liars’) can ex-
plicitly be determined. This number of liars is largest for integers n of the form
like p− 1|n− 1 and p+1|n+1 for all primes p|n. Such special types of numbers
must be very rare and it is not even known whether they exist at all. This shows
the difficulty for composites to pass the test with respect to varied parameters.
Thus, the average case error rate is expected to be much smaller (see [14,37]).

Below, we describe one method how the underlying algorithms can easily and
efficiently be evaluated. This is based on a naive multiply/add arithmetic and can
easily be implemented with low effort. Alternatively, this could be achieved via
the computation of elements in a quadratic extension field [22], the evaluation of
second-order recurrences and Lucas chains [9,16,23,34,40], or of powers of 2× 2
matrices [35].

For modular exponentiation, many improvements to the conventional power-
ing ladder have been designed. We hope that analogously to the many tools for
speeding up exponentiation in the prime field, similar devices for the QF - part
will further improve on the practicality of the proposed test.

1.4 Related Work

A number of probable prime tests have been proposed which are based on various
testing functions [1,6,8,19,33]. It turns out that the methods based on different
underlying techniques are the most reliable ones, whereas those based on one
technique only, allow the generation of pseudoprimes, even with respect to varied
testing parameters. From a practical viewpoint however, the suggestions based
on third and higher-order recurrences seem to be too expensive.

Pomerance, Selfridge, Wagstaff [33] and Baillie, Wagstaff [8] proposed a test
based on both the Fermat test and on second-order (Lucas) sequences, which is
very powerful. Although the underlying criteria can be evaluated extremely fast,
no composite number is known for which this probable prime test fails. Indeed,
nobody has yet claimed the $620 that is offered for such an example. While it is
not known whether this test does allow any pseudoprimes at all, some heuristics
indicate that such composites actually might exist [31]. Although the specific
choice of the parameters makes the routine easy to describe, it might increase
the chance of generating any pseudoprimes with respect to these parameters.
Some related tests based on different parameters have been implemented in
several computer-algebra systems which however turned out to be quite weak
[30]. It is not known how reliable other parameters to this test are. Also, there
is no quantifying measure to determine how reliable it actually is.

Several probabilistic tests have been published, for which an explicit esti-
mate on the worst case failure probability is known.

– The Miller-Rabin test is usually taken as a unit measure with running time
1 selfridge [16] and worst case failure 1/4.

– J. Grantham [16] proposed an extremely efficient test with worst case failure
rate 1/7710 and asymptotic running time 3 selfridges. Unfortunately, the
practical implementation is rather involved and it seems that on average
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4.5 log2(n) multiplications (instead of the asymptotic (3 + o(1)) log2(n)) are
necessary.

– By S. Müller [26] a probable prime test for the case that n ≡ 1 mod 4 was
developed. The test has running time similar to the Grantham test, but
with worst case error probability 1/8290 per round. This bound, however,
can only be achieved for at least two iterations of the test.

– Recently, a proposal has been made [28] for n ≡ 3 mod 4 with failure rate
1/131040 but only 3 selfridges running time.

Jaeschke’s tables [17] of strong pseudoprimes show that these occur very
frequently for n ≡ 1 mod 4. Unfortunately, the techniques for the most effective
test above, [28], are exclusive for the case n ≡ 3 mod 4. As the condition 4|n+1
constitutes a critical requirement for both the methods employed, as well as
for the failure estimate, this cannot be extended to n ≡ 1 mod 4. Our results
will be improvements and extensions of the methods of [26]. Indeed, for integers
n ≡ 1 mod 4 essentially new techniques will be developed in this paper.

Relevance to Cryptography: For cryptographic applications, it is often neces-
sary to generate pseudoprimes which are primes except for arbitrary small error
rate. E.g., if a probability 1/2100 is to be achieved, one needs

– 50 iterations of Miller-Rabin, which is 50 selfridges,
– 8 iterations of the Grantham test, which is (asymptotically) 24 selfridges,
– 6 iterations of the proposed test, which is only 19 selfridges.

Due to the simple evaluation method of the proposed test via a naive powering
ladder (sect. 3.1), we hope that this theoretical improvement will have some
practical significance as well.

2 The New Idea

2.1 Some Fundamental Properties

Unless stated otherwise, let p, pi be an odd prime, respectively an odd prime
divisor of an integer n ≡ 1 mod 4 that is to be tested for primality. For simplicity
we use the abbreviations of [36], psp(a), epsp(a), spsp(a), to denote, respectively,
a pseudoprime, an Euler pseudoprime, and a strong pseudoprime, to base a.

Let ε(p) =
(
D
p

)
and ε(n) =

(
D
n

)
, for D = P 2 − 4Q the discriminant of

x2 − Px + Q with characteristic roots α = α(P,Q), α = α(P,Q). We will
assume that gcd(2QD,n) = 1.

A number of probable prime tests are based on suitable properties in Fp2 . As
with the Miller-Rabin test in Fn, when n = p is prime, for both roots y ∈ Fn2

of x2−Px+Q with ε(n) = −1, one has, yu ≡ 1 mod n, or y2ku ≡ −1 mod n for
some 0 ≤ k ≤ t−1, where n2−1 = 2tu with u odd. The exponent 2ku = n2−1

2j is
still too large for obtaining strong testing conditions. More restrictive ones are
being obtained via yn−ε(n) ≡ 1, respectively Q mod n, according as ε(n) = 1 or
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−1. As the former case constitutes an ordinary Fermat condition, in combination
with a Fermat test, it only makes sense to test for the latter one. Thus, unless
stated otherwise, we will throughout assume ε(n) = −1.

Composite integers n fulfilling yn−ε(n) ≡ Q mod n for ε(n) = −1 are known
as quadratic field based pseudoprimes w.r.t. (P,Q), abbrev. QFpsp(P,Q).

If
(
Q
n

)
= 1 and if α, α denote the two roots y, then, for n prime, the two roots

need to evaluate to the same value, even with the smaller exponent (n−ε(n))/2 in
place of n− ε(n), i.e., we must have α(n−ε(n))/2 ≡ α(n−ε(n))/2 mod n. Composite
integers fulfilling this criterion are denoted elpsp(P,Q). In our case, for n ≡
1 mod 4 and ε(n) = −1, the value (n+1)/2 is odd which already constitutes the
strong Lucas test and the pseudoprimes are denoted slpsp(P,Q).

Lemma 1. Let ε(n) = −1 and let n ≡ 1 mod 4 be a composite integer that
fulfills αn−ε(n) ≡ αn−ε(n) ≡ Q mod n for

(
Q
n

)
= 1. Then n is both psp(Q)

and QFpsp(Q). If α(n−ε(n))/2 ≡ α(n−ε(n))/2 mod n then n is slpsp(P,Q) for(
D
n

)
= −1 and, moreover,

(
Q
p

)
= 1 for all prime divisors p of n.

Proof. This follows directly from the proof of Theorem 3, [26], because for n ≡
1 mod 4, (n− ε(n))/2 = (n+ 1)/2 is odd. ��

The above conditions are tested in [16], however, Grantham does not consider
the nature of the value α(n−ε(n))/2 modulo n. In [26], a formula was obtained
when n is a prime, and this was used to establish a new pseudoprimality test.

Proposition 1. If α is any root of x2 − Px + Q, and if a2 ≡ Q mod n for n

prime, then α
n−ε(n)

2 ≡ α
n−ε(n)

2 mod n, and this is equivalent to
(
P+2a
n

)
mod n,

if ε(n) = 1, and equivalent to
(
P+2a
n

)
a mod p, if ε(n) = −1.

Often a composite n fulfills the condition αn−ε(n) ≡ αn−ε(n) ≡ Q mod n, but
not the stronger one of Proposition 1. In that case gcd(α(n−ε(n))/2 ± a, n) is a
proper factor of n. This is the final condition being tested in Step 3 of the test.

2.2 The Main Problem

While the values α(P,Q)k, α(P,Q)k, and Qk mod n theoretically can be evalu-
ated with less than (3+o(1)) log2 n multiplications [16], the practical application
of the techniques in [16] is rather involved. For general Q, the fastest algorithm is
given in [16]. Unfortunately, this requires special representation of k in terms of
shortest addition chains. Brauer’s Theorem [18] guarantees that asymptotically
the number of multiplications in such shortest addition chains is o(log(n)), that
is, it is vanishingly small compared to the number of squarings needed. This gives
the asymptotically small running time of the Grantham test, but in practice, the
required number of multiplications seems to be more like 4.5 log2(n).

For α = α(P,Q), α = α(P,Q), define the Lucas functions by Um(P,Q) =
αm−αm
α−α and Vm(P,Q) = αm+αm. It can be shown that these are always integers

(see, e.g., [41]).
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Thus, for the QF -based tests (with, as usual, ε(n) = −1), the condition
α(n+1)/2 ≡ α(n+1)/2 mod n, is equivalent to the vanishing of Uk(P,Q) mod n for
k = (n+ 1)/2. This, in turn can easily be checked via the condition

DUk(P,Q) = 2Vk+1(P,Q)− PVk(P,Q) (1)

by means of two V - values, which is much easier than evaluating the U - function.
Moreover, the computation of Vk(P,Q) for Q = 1 is much easier and faster

than for general Q. Thus, it is natural to ask, how easily the required Vk(P,Q),
Vk+1(P,Q) can be computed via some shifted parameters (P ′, Q′) with Q′ = 1.

A transformation between Vk(P,Q) and V2k(P̂ , 1) is given in [13]. Unfortu-
nately this induces a shift of the degree from k to 2k and cannot be applied in
our scenario, which requires k = (n− ε(n))/2 = (n+ 1)/2 to remain odd.

As in our case Q is a square, we apply the following well-known identities,

Vk(ca, a2) = akVk(c, 1), aUk(ca, a2) = akUk(c, 1). (2)

Hence, if α(P/a, 1)(n+1)/2 ≡ α(P/a, 1)(n+1)/2 ≡ ±1 mod n and a2 ≡ Q mod
n, then also α(P,Q)(n+1)/2 ≡ α(P,Q)(n+1)/2 ≡ ±a(n+1)/2 mod n.

Our main goal is a method for the separate computation of a root a of Q
modulo n and for the evaluation of α(P/a, 1)k, which in total is faster than the
evaluation of α(P,Q)k, and which also induces a smaller failure rate. In detail,
for the former,

– Find a practical root-finding algorithm that returns the root a of Q,
(
Q
n

)
= 1

for n prime, but with high probability discloses n as composite, otherwise.
– If the value a returned is a correct root of Q modulo n, then this should

impose restrictive pseudoprimality conditions on n.

Remark 1. 1. If a is indeed a correct root of Q mod n, then the QF - part of the
proposed test implies α(P,Q)(n+1)/2 ≡ α(P,Q)(n+1)/2 ≡ ±a(n+1)/2 mod n.
If the root-finding algorithm imposes the condition a(n−1)/2 ≡ ±1 mod n on
n, then the above quantity is congruent to ±a mod n (see Proposition 1)
and in that case n is also spsp(Q).

2. This shows why the case n ≡ 3 mod 4 in [28] is easier to deal with. Not
only can the root be efficiently computed via Q(n+1)/4 mod n, but also, even
when n is composite, this implies that a(n−1)/2 ≡ ±1 mod n.

3. While the root-finding algorithms for n ≡ 1 mod 4 are more expensive, they
will be used in a way so as to induce some additional testing conditions.

2.3 Square Roots Modulo n and Conditions on the Pseudoprimes

The case that n ≡ 1 mod 4 .
Let n = 2rs + 1, with s odd, and call r the order of n. Suppose

(
u
n

)
= −1

and (us)2
r−1 ≡ −1 mod n. Then the 2-Sylow subgroup Sr of Z

∗
n is cyclic of order

2r. Shanks’ root-finding algorithm [38] is based on the relation a2 ≡ bQ mod n
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for some b in some Sk. When n is prime, there exist new k, b, a such that this
condition still holds and the index k decreases. Subsequently b gets pushed down
into smaller subgroups of Sk until finally b ∈ S0 = {1}, and the solution is found.

Note that the algorithm hinges on the existence of some u as above. But that
criterion is not limited to n being prime. Modulo n, that condition on the u will
either fail, or often the result of the algorithm will not be a root of Q. Indeed,
the algorithm of Shanks not only efficiently performs Step 2 of the proposed test,
but also works as an efficient probable prime test (see also [29]).

// Detailed Description of Step 2 of the Proposed Test.
INPUT: n = 2rs+ 1, 2 |/ s,

(
Q
n

)
= 1.

OUTPUT: a, a square root of Q mod n, or ‘n is composite’.

1. (Precomputation)
Choose randomly u ∈ Z

∗
n with

(
u
n

)
= −1. Let z ← us mod n. If not

z2r−1 ≡ −1 mod n, declare n to be composite.
2. (Initialization)

Let k ← r − 1, t← Q(s−1)/2 mod n, a← Qt mod n, b← at mod n.
3. (Body of the Algorithm)

While b �≡ 1 mod n (*)
m← 1, B ← b, found← false;
While m < k and found = false (**)

if B = 1 then OUTPUT g ← gcd(B0 −B,n);
// proper factor of n found

if B = −1 then found← true;
else m← m+ 1, B0 ← B, B ← B2 mod n.

If found = false then OUTPUT ‘n is composite’.

// otherwise we have B ≡ b2m−1 ≡ −1 mod n

Update t← z2k−m−1
, z ← t2, b← bz, a← at mod n, k ← m.

4. OUTPUT ±a mod n.

The algorithm always returns a root of Q when n is prime. This also holds
for n ≡ 3 mod 4. Note the more restrictive condition (**), b2m−1 ≡ −1 mod n
for m ≥ 1, as opposed to the original one by Shanks, b2m ≡ 1 mod n. This
introduces an additional pseudoprimality testing condition.

Lemma 2. If a composite n passes the precomputation, then n is spsp(u). If
the original b is congruent to 1 modulo n, or if n fulfills condition (**) at least
for the first loop (*), then n is spsp(Q) and a(n−1)/2 ≡ ±1 mod n.

Moreover, n passes at most r−1 iterations of the loop (*), where r = ν2(n−1).
Additionally, for k ≥ 2 and random input Q, n passes k iterations of (*) with
probability at most 1/3k.

Proof. The first assertions are obvious. Now suppose n − 1 is at least divisible
by 23 and that n enters the loop (*) at least twice.

Note that after each iteration (*) the relation a2 ≡ Qb mod n holds. Once
b ≡ 1 mod n, the desired solution is found.
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From the previous iteration we have b2m−1 ≡ −1 mod n. Let h = z2k−m . From
the latter condition and the fact that u(n−1)/2 ≡ −1 mod n it follows exactly as
when n is a prime, that h has order 2m modulo n.

If firstly h2m−1 ≡ −1 mod n (what would happen if n were prime), then
hb = t2b has order dividing 2m−1 and the new b enters the next loop. But this
means that each new b has an order which is at least by one factor in 2 smaller
than the previous b. This explains the condition that each new m has to be less
than k (which was the previous m). Equivalently, the sequence of the k in the
loop are strictly decreasing, so that altogether there are less than r iterations of
(*) (unless n is already previously disclosed as composite).

On the other hand, if h2m−1 �≡ −1 mod n, but b2m−1 ≡ −1 mod n, then
(hb)2

m−1 �≡ 1 mod n and (hb) (which is the new b) has order 2m, as does the
previous b. In this case, the new b does not fulfill (**).

It follows from above that unless the algorithm already terminated, we have
b2M ≡ 1 mod n for some M . If M = 0, we are done. Otherwise, we are seeking
the smallest m with b2m−1 ≡ −1 mod n, when b �= 1, i.e., when m ≥ 1. In that
case, in analogy to the Miller-Rabin test, the first such power of b before 1 has
to be −1. When we first arrive at 1, without encountering −1, n is immediately
disclosed as composite, and the gcd above obviously yields a proper factor of n.
In exactly such a case the algorithm terminates at a point where it would not if
n were prime. Thus, the above algorithm terminates much faster for composites.
Precisely, it terminates for each case where b2m ≡ 1 mod n, but b2m−1 ≡ 1 mod p
for one prime p dividing n, and b2m−1 ≡ −1 mod q for another prime q|n. It does
not terminate when b2m−1 ≡ −1 mod p for all p|n. If n is the product of two
primes, the latter only happens in one out of three cases, while if n has more
factors, the probability not to terminate is even smaller. Thus, in at most 1 out of
3 cases each additional iteration of (*) does not terminate. The desired assertion
follows from the hypothesis that the Q are randomly chosen (subject only to the
condition

(
Q
n

)
= −1), which implies that all the b values are random. ��

For the special case n ≡ 5 mod 8 the above can be achieved even simpler.

// Alternative Case of Step 2 of the Proposed Test.

1. Select randomly d ∈ Z
∗
n.

If n is not spsp(2d2), declare n to be composite.
2. Let z ← (2d2Q)(n−5)/8 mod n and i← z2 · 2d2Q mod n.
3. If not i2 ≡ −1 mod n, declare n to be composite, otherwise

a ≡ zdQ(i− 1) mod n is a square root of Q modulo n.

When n is known to be prime, this always gives is a square-root of Q via one
exponentiation only (then clearly the first step can be omitted).

Lemma 3. If a composite n ≡ 5 mod 8 passes the above algorithm, then a and
i are correct roots of Q and −1 mod n, respectively. Moreover, n is spsp(2d2),
as well as spsp(2d2Q). As a consequence, n is also epsp(Q).
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Proof. This follows since any epsp(a) for
(
a
n

)
= −1 is already spsp(a). ��

Remark 2. For d = 1 the above algorithm was proposed by Atkin [5], and actu-
ally constitutes a deterministic root-finding method for primes n ≡ 5 mod 8.

Step 1 is necessary to have n epsp(Q), which will be required below. We
incorporate the random value d to minimize the failure probability by means of
Miller-Rabin with respect to the random base 2d2.

Corollary 1. Suppose a composite integer n passes the proposed test. Then,
in the case of the square root finding algorithm for n ≡ 5 mod 8, this implies
α(P,Q)(n+1)/2 ≡ α(P,Q)(n+1)/2 ≡ ±a(n+1)/2 mod n, and in the case of the
Shanks-based root finding algorithm, the latter value is congruent to ±a mod n.
In both cases, α(P,Q)n+1 ≡ α(P,Q)n+1 ≡ Q mod n.

Proof. The first part follows from above. Note that if n passes the root-finding
algorithm then it is epsp(Q). But if n is epsp(Q) and elpsp(P,Q), then by well-
known results [24], this implies, α(P,Q)n+1 ≡ α(P,Q)n+1 ≡ Q mod n. ��

3 Performance

3.1 Evaluation of the QF -Based Part

By property (1), the QF -part can be evaluated via the V - functions only. Using
the identities, V2k(P, 1) = Vk(P, 1)2−2 and V2k+1(P, 1) = Vk(P, 1)Vk+1(P, 1)−P,
this can be done via a simple powering ladder analogously as for exponentiation.

The algorithm in [34] can easily be modified to obtain two consecutive V -
values, as required. The operations are done modulo n.

INPUT: m =
∑l
j=0 bj2

j, the binary representation of m, and P.
OUTPUT: The pair Vm(P, 1) and Vm+1(P, 1).

1. (Initialization) Set d1 ← P, d2 ← P 2 − 2.
2. (Iterate on j) For j from l − 1 down to 1 do

If bj = 1, set d1 ← d1d2 − P, d2 ← d2
2 − 2.

If bj = 0, set d2 ← d1d2 − P, d1 ← d2
1 − 2.

3. (Evaluate) Let w1 ← d1d2 − P, w2 ← d2
1 − 2.

If b0 = 1 return (w1, Pw1 − w2), else return (w2, w1).

Thus, the pair V(n+1)/2(P, 1), V(n+1)/2+1(P, 1) may be computed modulo n
using fewer than 2 log2(n) multiplications mod n and log2 n additions mod n.
Half of the multiplications mod n are squarings mod n.

// Detailed Description of Step 3 of the Proposed Test.

– Let k = (n+ 1)/2 and evaluate (Vk(P ′, 1), Vk+1(P ′, 1)) modulo n.
– Test, if 2Vk+1(P ′, 1) ≡ P ′Vk(P ′, 1) mod n. If not, declare n to be

composite.
– Compute gcd(Vk(P ′, 1)± 2, n). If this reveals a factor of n,

output the factor. Otherwise declare n to be a probable prime.
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3.2 Runtime-Analysis

In [16], J. Grantham suggested a unit measure for a probable prime test based
on the running time of the Miller-Rabin test. An algorithm with input n is said
to have running time of k selfridges if it can be computed in (k + o(1)) log2 n
multiplications mod n. For simplicity, squarings are counted as multiplications.

As exponentiation to the tth power can be done in (1 + o(1)) log2 t multipli-
cations by using easily constructed addition chains [18], the Miller-Rabin test
has running time of at most 1 selfridge.

Theorem 2. – For random input Q and u, the proposed test, via the general
root finding algorithm, has average running time 4 selfridges.

– For the n ≡ 5 mod 8 based root finding algorithm, the proposed test always
has running time less than 4 selfridges.

Proof. By the above, Step 3 of the proposed test requires at most two selfridges.
The Atkin-based method always requires two exponentiations, so we only

need to consider the general Shanks-based root finding algorithm. Precomputa-
tion and initialization require one exponentiation each. It follows from [21] that
the number of multiplications averaged over primes n ≡ 1 mod 4 is o(1) log2(n).
The additional squarings that we require in Step 1 for the Miller-Rabin test base
u can be comprised in the o(1) log2(n) multiplications above.

We upper bound the number of multiplications in the worst case required by
the loop (*). If n is spsp(u) then z = us generates Sr, the 2-Sylow subgroup of
Z
∗
n. So Sr has order 2r, Sr−1 has order 2r−1, is generated by z2, and in general,

Sr−i has order 2r−i and is generated by z2i for i = 0, 1, ..., r.
The condition (**) indicates in which of the 2-subgroups b is in. Alternatively,

we can consider the values that k takes in the algorithm, which also (except for
the first k), specifies the subgroup where b is in. Namely, b ∈ Sk \ Sk−1.

Recall that the sequences of the k-values have to be strictly decreasing. E.g.,
for order r = 4, the possible k-sequences are, (4, 1), (4, 2), (4, 2, 1), (4, 3), (4, 3, 1),
(4, 3, 2), (4, 3, 2, 1). Generally there are 2r−1 such k-sequences.

For random Q’s and u’s the values b are random as well and it can be
shown (see [21, p. 235]) that every k-sequence has the same probability. Lind-
hurst determined the total number of multiplications Cr over all the possible
k-sequences and then divided by the number of sequences, 2r−1, to get the av-
erage. Then, the average number of multiplications (after the initialization), is
Cr/2r−1 = (r2 + 7r − 12)/4 + 1/2r−1 (see [21, p. 236]).

Although all sequences are equally like, they can be grouped into those with
the same length. The 2r−1 sequences of order r are obtained by fixing the r
as first value of the sequence, and by determining the

(
r−1

1

)
,
(
r−1

2

)
, . . . ,

(
r−1
r−1

)
subsequences (k1, .., kl) of respective lengths 1, 2, . . . , r − 1. This shows that an
average sequence is expected to have length about r/2. Equivalently, on average,
the loop (*) is iterated r/2 times. Additionally, for r ≥ 8, more than 99 % of all
sequences have length between � r4� and � 3r

4 �.
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But then Lemma 2 and Lemma 6 below implies that on average at most
(r2+7r−12)/4+1/2r−1

3�r/4� multiplications are to be expected before the algorithm ter-
minates, when n is composite. Comparing numerator and denominator, we see
that this is much less than for primes, as repeated iterations of (*) are much less
likely. ��

3.3 The Iterated Test

After the first round it is more efficient to shorten each of the following iterations,
instead of re-running the entire procedure. For entire iteration, we would achieve
a failure probability of about 1/220k and 4k selfridges for k rounds.

Below, the failure rate of the QF -based part will be shown to be much smaller
than the one based on the root finding algorithm. Yet, each of those parts requires
about two selfridges. When being iterated, it is more efficient to repeat only a
part of the root finding algorithm, whilst obtaining the full QF -part. In fact, for
both of the above root finding algorithms, the first step is only required at the
first round. This motivates the following shortened version of the proposed test
for any iterations after the first.

// Iterations After the First Round of the Test.

1. (Parameter Selection) As above.
2. (Square Root Part)

- Let u and d, accordingly, be the values of the first round
of the proposed test in Step 1 of the root finding part.

- Run one of the above root finding algorithms by skipping
the corresponding Step 1.
If the algorithms declares n composite, stop.

- Let a and P ′ be as above.
3. (QF-Based Part) As above.

4 The Probability Estimate

The proof of Theorem 1 will be given in a sequence of auxiliary results. The
general idea is to determine an upper bound on the number of the liars (i.e.,
pairs that pass) and to upper bound the ratio of these to the number of all pairs
possible as input to the test. It was shown in [16] that for n an odd composite,
not a perfect square, the number of pairs (P,Q), such that

(
P 2−4Q

n

)
= −1 and(

Q
n

)
= 1, 1 < gcd(P 2 − 4Q,n) < n, or 1 < gcd(Q,n) < n, is more than n2/4.

4.1 The QF -Based Part

Underlying all the pseudoprimality tests based on quadratic fields is the inves-
tigation of the powers of the characteristic roots α, α. It is well known that
if n is any integer with gcd(Q,n) = 1 then there is a positive integer m such
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that α(P,Q)m ≡ α(P,Q)m mod n. Let ρ = ρ(n, P,Q) be the least such positive
integer. This is usually called the rank of appearance (apparition) [36,41].

The rank of appearance has the following properties (see [11,36,39]).

α(P,Q)m ≡ α(P,Q)m mod k if and only if ρ(k, P,Q)|m, (3)
ρ(p, P,Q) | p− ε(p), and ρ(p, P,Q) | (p− ε(p))/2 iff (Q/p) = 1, (4)
ρ(lcm(m1, ...,mk)) = lcm(ρ(m1), ..., ρ(mk)), (5)

If pc|| α(P,Q)ρ(p,P,Q) − α(P,Q)ρ(p,P,Q) then ρ(pe, P,Q) = pmax(e,c)−cρ(p, P,Q).
(6)

A necessary condition for the test to pass is α(P,Q)n+1 ≡ α(P,Q)n+1 mod n.
Since p |/n+1 for p|n, we need not consider the pairs (P,Q) modulo pα whose rank
is a multiple of p (compare (6)). Thus, it suffices to investigate the parameters
whose rank is an odd divisor of p− ε(p), since (n+1)/2 is odd for n ≡ 1 mod 4.

Given n, the task is to count the number of the liars (P,Q), which is deter-
mined by the rank of appearance of each of these pairs. But this requires knowl-
edge of the individual quadratic residue symbols

(
Q
pi

)
and ε(pi) =

(
P 2−4Q
pi

)
for

all primes pi|n.
Generally, these values are not known for the number n to be tested for pri-

mality. However, certain conditions on these symbols are automatically satisfied
when a composite n indeed passes the test. Specifically, by Lemma 1 it suffices
to consider the case that

(
Q
p

)
= 1 for any prime p dividing n. We separately

consider the values ε(pi).

Definition 1. Let n =
∏ω
i=1 p

αi
i , where ω = ω(n) is the number of differ-

ent prime factors of n. For 1 ≤ i ≤ ω let ε = ε(pi) ∈ {1,−1}, and call
(ε) = (ε(p1), ..., ε(pω)) the signature modulo n with respect to P and Q, when(
P 2−4Q
pi

)
=
(
D
pi

)
= ε(pi) for all i. Similarly, we call each ε(pi) the signature

modulo pi|n, and ε(p) the signature modulo any prime p.

Throughout, P is assumed to be different from 0, since otherwise the rank of
appearance modulo n is always equal to 2. (This is no restriction as for P = 0
always (D/n) = 1 in our case.) Proposition 2 was proved in [28] and Proposition
3 was proved in [25].

Proposition 2. Let k, p |/ k, be a positive integer and ε ∈ {−1, 1} a constant.
For a fixed value of P0, P0 �= 0, the number of Q mod pα such that

(
Q
p

)
=

1, (P0, Q) has signature ε mod p, and α(P0, Q)k ≡ α(P0, Q)k mod pα, equals
1
2

(
gcd(k, p−ε2 )− 2

)
if 2|k and 2|p−ε2 , and 1

2

(
gcd(k, p−ε2 )− 1

)
, otherwise.

Proposition 3. Let k be a positive integer with p |/ k and ε ∈ {−1, 1} a constant.
For a fixed value of Q0,

(
Q0
p

)
= 1, the number of P mod pα such that (P,Q0)

has signature ε and α(P,Q0)k ≡ α(P,Q0)k mod pα is, 1
2 gcd(k, p− ε)− 1, when

ν2(k) ≥ ν2(p− ε), and gcd(k, p−ε2 )− 1, otherwise.
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Corollary 2. Let a signature (ε) be fixed. Then the number of pairs (P,Q) that
fulfill α(P,Q)(n+1)/2 ≡ α(P,Q)(n+1)/2 mod n with respect to this signature is at

most 1
2ω
∏ω
i=1

(
gcd(n+1

2 , pi−ε(pi)2 )− 1
)2
·∏ω

i=1 p
αi−1
i .

Lemma 4. Let n ≡ 1 mod 4 be an odd integer, not a perfect square. If pj is a
prime such that p2

j divides n, then n is slpsp(P,Q) for
(
D
n

)
= −1 with probability

less than 1/(8pj).

Proof. Let (ε) be a fixed signature. By Corollary 2, the number of liars (P,Q)
with respect to this signature is at most (1/23ω)

∏ω
i=1(pi − 1)2 ·∏ω

i=1 p
αi−1
i .

If ω = 2, then there are two possible signatures with
(
D
n

)
= −1 and so the

number of the liars is at most (1/25)·∏ω
i=1(pi−1)2 ·

∏ω
i=1 p

αi−1
i . This gives a fail-

ure probability of less than (1/23)·∏ω
i=1 p

αi+1
i /

∏ω
i=1 p

2αi
i = 1/(23·∏ω

i=1 p
αi−1
i ) ≤

1/(8pj). For ω ≥ 3 there are always less than 2ω different signatures with(
D
n

)
= −1 and the number of liars is less then (1/22ω) ·∏ω

i=1 p
αi+1
i which gives a

probability of at most 1/(22ω−2pj) ≤ 1/(24pj). Finally, if ω = 1, so that n = p
αj
j ,

then necessarily αj > 2 by hypothesis and the probability in this case is at most
1/(2p2

j ). ��

Typical for pseudoprimality testing based on the Fermat/QF -based combina-
tions is the fact that

(
D
p

)
= 1 becomes rather unlikely for p|n when

(
D
n

)
= −1.

Proposition 4. The number of pairs (P,Q) mod n for which a squarefree inte-
ger n with ω prime factors fulfills α(P,Q)(n+1)/2 ≡ α(P,Q)(n+1)/2 mod n such
that

(
P 2−4Q
pi

)
= 1 for some pi|n, is given as follows. It is less than 5nφ(n)

26B if

ω = 2, less than nφ(n)
(

ω
23ω−2B + 1

22ω−4B2

)
if ω ≥ 4 is even, and less than nφ(n)

B2

if ω is odd.

Proof. See the proof to Proposition 5 in [28], where exactly the number of such
pairs is being established. ��

Remark 3. For ω = 2 the proof in [28] shows that the above quantities are only
obtained for strongest divisor properties, like odd(pi+1)|n+1 for one pi|n, and
odd(pj + 1)|t(n + 1) for t = 3 and the other pj |n. Otherwise, the results would
be much smaller.

When the test passes for some fixed Q = Q0, then we have for each parameter
P , α(n+1)/2 ≡ α(n+1)/2 mod n, and this is either equivalent to a(n+1)/2 mod n,
or to −a(n+1)/2 mod n, where a is independent of P , and by the root finding
algorithms is uniquely determined by the Q0. For all P that pass, this determines
a specific general ‘multiplier’ S ≡ a(n+1)/2, resp. S ≡ −a(n+1)/2 modulo n. The
proof to the next result is analogous to Lemma 5, [26] (see Proposition 4, [28]).
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Lemma 5. Let n ≡ 1 mod 4 be any composite integer, and Q = Q0, as well
as some ‘multiplier’ S be fixed. If p is any prime dividing n, then there are at
most 1

2

(
gcd(n+1

2 , p− ε(p))− 1
)
elements P with

(
P 2−4Q0

p

)
= ε(p) for which

α(P,Q)
n+1

2 ≡ α(P,Q)
n+1

2 ≡ S mod p.

Corollary 3. For a squarefree n ≡ 1 mod 4 let (ε) be a fixed signature. Then the
number of pairs (P,Q) with α(P,Q)(n+1)/2 ≡ α(P,Q)(n+1)/2 ≡ ±a(n+1)/2 mod n

w.r.t. this signature is at most 1
22ω−1

∏ω
i=1(gcd(

n+1
2 , pi−ε(pi)2 )− 1)2.

Remark 4. It is essential that n ≡ 1 mod 4 to have (n + 1)/2 odd. For n ≡
3 mod 4 analogous, but more involved results can be obtained, [28].

This gives the error rate for each iteration of the test (after the first round).

Theorem 3. Let P and Q be randomly chosen in Step 1 of the proposed test.
Let n ≡ 1 mod 4 be a composite integer which is not a perfect square and not
divisible by primes up to B. Then the probability that n fulfills α(P,Q)(n+1)/2 ≡
α(P,Q)(n+1)/2 ≡ ±a(n+1)/2 mod n for a2 ≡ Q mod n, is given as follows.

– If n is not a product of exactly three prime factors, it is less than 1/217 +
4/B2 < 1/131040.

– If n is the product of three different primes, and if n is further epsp(Q), then
it is less then 4/B2 + 3(B2 + 1)/2(B4 − 3B2).

Proof. When n is not squarefree, Lemma 4 gives the result. If a squarefree n has
an even number of prime factors we apply Proposition 4, where the probability
becomes largest for ω = 2 in which case it is less than 5/(24B) < 1/160000.

Further, if n = p1p2p3 is squarefree and has exactly 3 prime factors, we
can use Lemma 2.11 of [16]. In this Lemma, Grantham separately considers the
cases,

(
P 2−4Q
pi

)
= 1 for some i, and

(
P 2−4Q
pi

)
= −1 for all i. By Proposition 4

(which corresponds to Lemma 2.9 of [16] when ω is odd), the former case yields
a probability of 4/B2. In the latter case, necessarily αn+1 ≡ Q mod pi and
αpi+1 ≡ Q mod pi so that αn−pi ≡ 1 mod pi, since n is epsp(Q) by hypothesis
(see Corollary 1). This congruence holds for exactly gcd(n−pi, p

2
i −1) elements.

Since n has only three factors, these gcd′ s cannot all be equal to its maximal
value, p2

i − 1. Indeed, Grantham gives an upper limit for these quantities. From
this, he obtains the probability for such pairs which pass the test. By adding
both cases, the probability can be bounded by 4/B2 + 3(B2 + 1)/2(B4 − 3B2).

It remains to consider the case where n is squarefree and divisible by an odd
number ω of at least 5 prime factors. The number of pairs with

(
D
p

)
= 1 for at

least one p|n is again by Proposition 4 less than n2/B2. So it suffices to consider
the pairs with

(
D
p

)
= −1 for all primes p|n. In this case the number of pairs is

by Corollary 3 at most (1/24ω−1)
∏
(pi − 1)2. When adding these two cases, the

probability is upper bounded by 1/217 + 4/B2 which is less than 1/131040. ��
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4.2 The Square Root Finding Based Part

It is well-known that when a is taken randomly from Z
∗
n, the probability for a to

be a Miller-Rabin liar is at most 1/4. If
(
a
n

)
is fixed to some special value (e.g.,

−1), then in that case there are only φ(n)/2 such a as possible input values to
the Miller-Rabin test. Yet, even for fixed jacobi symbol, we show below that in
our case the failure rate is smaller than the expected 2/4.

The following result can immediately be verified.

Proposition 5. Let n be spsp(u), where
(
u
n

)
= −1, and let p be any prime

divisor of n. Then, if
(
u
p

)
= −1, we have ν2(p−1) = ν2(n−1), and if

(
u
p

)
= 1,

we have ν2(p− 1) > ν2(n− 1).

Notation: Let ν(n) denote the largest integer such that 2ν(n) divides p − 1
for each prime p dividing n. As above, write n− 1 = 2rs with s odd.

Proposition 6. Suppose n is spsp(a) for
(
a
n

)
= −1. Then a ∈ S−1(n) where

S−1(n) = {a mod n : a2ν(n)−1s ≡ −1 mod n}. Moreover, we have #S−1(n) =
2(ν(n)−1)ω(n)∏

p|n gcd(s, p− 1).

Proof. If
(
a
n

)
= −1 then there exists p|n with

(
a
p

)
= −1 and by Proposition

5, ν2(p − 1) = r = ν(n). Moreover, in that case, ν2(p − 1) = ν2(ordp(a)). By
a standard result for n being spsp(a) (see e.g., [2]), we also have ν2(ordp(a)) =
ν2(ordq(a)), so that ν2(ordq(a)) = ν(n) for any q|n. In particular, if a2is ≡
−1 mod n for some 0 ≤ i ≤ r − 1 (the first case for n being spsp(a)), then
a2ν(n)−1s ≡ −1 mod q for any q|n. Note also that the case as ≡ 1 mod n (the
second case for n being spsp(a)), is impossible, since a(n−1)/2 ≡ −1 mod n by
hypothesis.

The cardinality #S−1(n) follows from [13, p. 128]. ��

Lemma 6. Suppose an odd composite integer n, not a perfect square, is not the
product of exactly three prime factors. Let a ∈ Z

∗
n be chosen randomly from the

set of all b with
(
b
n

)
= −1. Then the probability that n is spsp(a) is given as

follows. If n = p1p2 where p1 = 2kt + 1 and p2 = 2k+1t + 1, 2 |/ t, it is at most
1/4. Otherwise, it is at most 1/8.

Proof. We follow the proof of Lemma 3.4.8. in [13]. Then the desired probability
can be determined via

φ(n)
2#S−1(n)

=
1
2

∏
pα||n

pα−1 p− 1
2ν(n)−1 gcd(s, p− 1)

.

Note that each factor (p− 1)/(2ν(n)−1 gcd(s, p− 1)) is an even integer.
Then, if ω(n) ≥ 4, we have φ(n)/(2#S−1(n)) ≥ 1/2 · (24) = 8.
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If ω(n) = 2, we distinguish the following cases. Suppose 2ν(n)+2|p− 1 for one
p|n. Then 2ν(n)−1 gcd(s, p − 1) ≤ (p − 1)/8 and therefore φ(n)/(2#S−1(n)) ≥
1/2 · (2 · 8) = 8.

Now, let 2ν(n)+δ|p−1 for one p|n, where δ equals 0 or 1. Write the two primes
in the form p1 = 2ν(n)+δt1 + 1 and p2 = 2ν(n)t2 + 1.

For the case that t1 �= t2, Arnault [4, p. 877] showed that t1|s and t2|s is
simultaneously impossible. This means that for at least one pi, gcd(s, pi − 1) ≤
ti/3. If δ = 0, then φ(n)/(2#S−1(n)) ≥ 1/2 · (2 · 6) = 6, while if δ = 1, this
introduces an additional factor of 2, and φ(n)/(2#S−1(n)) ≥ 12.

The result of the Lemma follows, since for
(
Q
n

)
= −1 and ω(n) = 2 there

is one prime factor pi with
(
Q
pi

)
= 1, so that by Proposition 5, ν2(pi − 1) >

ν2(n− 1) = ν2(pj − 1) = ν(n). This means we do have δ = 1, as required.
Finally, the special case p1 = 2kt+1 and p2 = 2k+1t+1 implies t|s, in which

case φ(n)/(2#Sj(n)) ≥ 1/2 · (2 · 4), since 2ν(n)+1|p2 − 1. ��

4.3 Proof of the Main Result

Proof of Theorem 1. Suppose firstly that n is a product of three different prime
factors. Then Theorem 3 and Lemma 2, respectively Lemma 3, give the result.

For the Atkin-based root finding method Lemma 3 asserts that n is spsp(2d2).
Since

(
2d2

n

)
= −1 as

( 2
n

)
= −1 for n ≡ 5 mod 8, we can apply Lemma 6. By

assumption, d is chosen randomly in the square root finding algorithm. For
random selection of this basis, the condition on n to be spsp(2d2) is independent
of the QF -based test.

If n is not such a special two-factor integer as described in Lemma 6, this in-
troduces a factor of 1/8 (for each random d) in addition to the failure probability
obtained above in Theorem 3 for the test that checks the QF -condition.

If n passes the Shanks-based method, it firstly is spsp(u) for u with
(
u
n

)
=

−1. For randomly chosen u this again introduces a factor of 1/8 in the failure
probability.

Finally, for both types of the root finding algorithms, if n does have the
special two-factor form, then it follows easily that Proposition 4 introduces a
much smaller failure rate than above (the corresponding number of the QF -
liars, which is based on the quantities gcd(n + 1, p ± 1), becomes much smaller
when the odd part of p− 1 divides n− 1). In total, for ω = 2 the largest failure
rate applies to the general type of two factor numbers.

Thus, we have the failure rate, for the first round, F1 = 1/220 + 1/(2B2),
and for k − 1 additional iterations, F1 · (1/217 + 4/B2)k−1. For larger k the B
proportion is negligible, so that for a total of k rounds we have failure approxi-
mately 1/(220 · 217(k−1)) = 1/217k+3. ��
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5 Open Problems and Further Remarks

While with the much smaller failure rate of 1/1048350, our test has running
time 4 times that of the Miller-Rabin test. We do not know how effectively the
failure rate still can be reduced, when allowing more time for evaluation (for
each round). On the other hand, the question is, how to optimally tackle the
tradeoff between the reliability and the running time, and what the limits for a
test with much larger running time are, so that it practically still makes sense.

Strong pseudoprimes with respect to at least 4 random bases exist very often.
Below n = 1000 there are 54 such composites with at least four non-trivial bases
as liars. Our test, without trial division and, for simplicity d = 1 (see Lemma 3)
for n ≡ 5 mod 8, would for any possible pairs of parameters detect these.

Similarly, it is extremely easy to construct strong pseudoprimes with respect
to at least 42, 43, ..., random bases. We do not know, computationally, how
much more effort is required for the generation of pseudoprimes for the iter-
ated proposed test (say, for the n ≡ 5 mod 8 algorithm with d = 1). Here, the
typical Fermat/Lucas restrictions come into play and considerably limits the
effectiveness of the Fermat- based generation methods for pseudoprimes.

On the other hand, sometimes it seems that many repeated iterations would
not be necessary, if the input parameters have certain advantageous values. For
the Miller-Rabin test, it is known that the bases 2, 3, 5, 7 seem to work better,
as they are primitive roots for most primes.

Even more effectively, the special choice of the parameters in the Baillie-PSW
test essentially improves on its reliability.

If the proposed tests were run for one pair of parameters only, it is not known
to what extent, and for which parameters it is most reliable.

Note added in proof: I. Damg̊ard and G. Frandsen recently established a
QF -based test with average case error estimates [15].
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