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Abstract. Lossy channel systems are systems of finite state automata
that communicate via unreliable unbounded fifo channels. They are an
important computational model because of the role they play in the
algorithmic verification of communication protocols.
In this paper, we show that fair termination is decidable for a large class
of these systems.

1 Introduction

Channel Systems are systems of finite state automata that communicate via
asynchronous unbounded fifo channels (see example on Fig. 1). They are a natu-
ral model for asynchronous communication protocols and constitute the seman-
tical basis for ISO protocol specification languages such as SDL and Estelle.
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Fig. 1. A channel system with two component automata and two channels

Automated verification of channel systems. Formal verification of channel sys-
tems is important since even the simplest communication protocols can have
tricky behaviors and hard-to-find bugs. But channel systems are Turing power-
ful 1, and no verification method for them can be general and fully algorithmic.

? Now at Dept. Comp. Sci., ENS de Lyon. Email: bmasson@ens-lyon.fr. The research
described in this paper was conducted while B. Masson was at LSV.

1 A Turing machine is easily simulated (with polynomial-time overhead) by a single-
channel system that stores in its channel the contents of the Turing machine work
tape plus a marker for the current position of the reading head [BZ81].
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Lossy channels. A few years ago, Abdulla and Jonsson identified lossy channel
systems as a very interesting model: in lossy channel systems messages can be
lost while they are in transit, without any notification 2. These lossy systems are
the natural model for fault-tolerant protocols where the communication channels
are not supposed to be reliable (see [ABJ98,AAB99] for applications). Surpris-
ingly, some verification problems become decidable when one assumes channels
are lossy: reachability, safety properties over traces, and inevitability properties
over states are decidable for lossy channel systems [Fin94,AK95,CFP96,AJ96b].

One should not believe that lossy channel systems are trivial models where
no interesting behavior can be enforced (since messages can always be lost), so
that most verification problems would be vacuously decidable. Quite the op-
posite is true, and many problems are undecidable for these systems: recurrent
reachability properties are undecidable, so that temporal logic model-checking is
undecidable too [AJ96a]. Furthermore, boundedness is undecidable [May00], as
well as all behavioral equivalences [Sch01]. Finally, all the known decidable prob-
lems have nonprimitive recursive complexity [Sch02] and are thus much harder
than most decidable verification problems.

Fairness properties. The most important undecidable problem for lossy chan-
nel system is recurrent control state reachability (RCS), shown undecidable by
Abdulla and Johnson [AJ96a]. RCS asks whether there exists a run visiting a
given control state infinitely often (i.e. an infinite run satisfying a Büchi accep-
tance condition). The undecidability of RCS is often summarized by the slogan
“fairness properties are undecidable for lossy channel systems”.

Our contribution. In this paper we show that, in fact, there exist natural fair-
ness properties that are decidable for lossy channel systems. Indeed, we show
that termination under the assumption of fair scheduling (“fair termination”)
is decidable for a large and natural class of lossy channel systems: those where
the channels are not used to multiplex messages aimed at different components.
The underlying reason is that, for such systems, termination is “insensitive to
fairness”. This positive result applies to weak and strong fairness equally.

A second, more surprising and technically more involved result, is that ter-
mination for weakly fair scheduling is decidable for single-channel systems.

These two positive results are close to the frontier of decidability: we show
that undecidability appears after a slight weakening of the hypothesis. Further-
more, for strongly fair termination, we precisely characterize the communication
layouts that ensure decidability, showing that multiplexed channels really are
the central issue.

Finally, beyond termination, there is only one other decidable problem that
can meaningfully be investigated under the assumption of fair scheduling, namely
inevitability properties. We show that these properties immediately become un-
decidable when fair scheduling is assumed.

2 These systems are very close to the completely specified protocols independently
introduced by Finkel [Fin94].
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Plan of the paper. We first recall the necessary notions in Section 2. Then we
study fair termination for systems without multiplexed channels in Section 3, and
for single-channel systems in Section 4. Characterization of the layouts ensuring
decidability is done in Section 5. Finally, Section 6 discusses fair inevitability.

2 Channel systems

Given a finite alphabet Σ = {a, b, . . .}, we let Σ∗ = {u, v, . . .} denote the set of
all finite words over Σ. For u, v ∈ Σ∗, we write u.v (also uv) for the concatenation
of u and v. We write ε for the empty word and Σ+ for Σ∗ \ {ε}. The length of
u ∈ Σ∗ is denoted |u|.

The subword relation, denoted u v v, relates any two words u and v s.t.
u can be obtained by erasing some (possibly zero) letters from v. For example
abba v abracadabra, (the underlined letters are not erased). We write u @ v

when u v v and v 6v u, that is when u v v and |u| < |v|.
When C is a finite index set, Σ∗C = {U, V, . . .} is the set of mappings from C

to Σ∗, i.e. the set of C-indexed tuples of Σ-words. Concatenation and subword
ordering extend to tuples from Σ∗C in the obvious way.

2.1 (Perfect) channel systems

In this paper we adopt the extended model of (lossy) channel systems where
emptiness of channels can be tested for (and where several messages can be
read and written on several channels in a single step). Testing channels for
emptiness was allowed in [Sch01] (inspired by [May00]) and we observed that
known decidability results do not depend on whether this extension is allowed
or not. This remains the case in this paper and the reader will observe that our
undecidability proofs do not rely on the extension.

Definition 2.1 (Channel system). A channel system (with n components and
m channels) is a tuple S = 〈Σ, C, A1, A2, . . . , An〉 where
– Σ = {a, b, . . .} is a finite alphabet of messages,
– C = {c1, . . . , cm} is a finite set of m channels,
– for 1 ≤ k ≤ n, Ak = 〈Qk, ∆k〉 is the kth component of the system:

– Qk = {r, s, . . .} is a finite set of control states,
– ∆k ⊆ Qk × Σ∗C × Qk × Σ∗C ∪ Qk × C × Qk is a finite set of rules.

A rule δ ∈ ∆k of the form (s, U, r, V ) is written s
?U !V
−−−→ r and means that Ak

can move from s to r by consuming U (i.e. consuming U(c) on each channel
c ∈ C) and writing V (V (c) on each c). This assumes that U is available in the

channels. A rule of the form (s, c, r) is written s
c=ε?
−−→ r and means that Ak can

move from s to r after checking that channel c is empty.

Formally, the behavior of S is given via a transition system: a global state of
S is a tuple σ ∈ Q1 × · · · × Qn of control states, one for each component of S.
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For 1 ≤ k ≤ n, we let σ(k) denote the kth component of σ. A configuration of
S is a pair (σ, W ) of a global state and a channel contents W ∈ Σ∗C (W (c) = u

means that c contains u).
The possible moves between configurations are given by the rules of S. For

two configurations (σ, W ) and (σ′, W ′) of S we write σ, W
k:δ
−→perf σ′, W ′ when:

– δ is some r
?U !V
−−−→ s, σ(k) = r, there is a W ′′ s.t. W = UW ′′ and W ′ = W ′′V .

Furthermore σ′ = σ[k 7→ s], i.e. σ′(k) = s and σ′(i) = σ(i) for all i 6= k.

– δ is some r
c=ε?
−−→ s, σ(k) = r, W (c) = ε (and further W ′ = W and σ′ = σ[k 7→

s]).

We write σ, W
k
−→perf and say that Ak is enabled in configuration (σ, W ) when

there exists some σ, W
k:δ
−→perf σ′, W ′. Otherwise we say Ak is not enabled and

write σ, W 6
k
−→perf .

2.2 Lossy channel systems

The notation “−→perf” stresses that we just defined perfect steps, i.e. steps where
no message is lost. Lossy channel systems are channel systems where steps need
not be perfect. Instead, any number of messages can be lost from the channels,
without any notification.

In Abdulla and Jonsson’s model a lossy step is a perfect step possibly pre-
ceded and followed by arbitrary losses from the channels. Formally, we write

σ, W
k:δ
−→loss σ′, W ′ when there exist channel contents V and V ′ s.t. W w V ,

σ, V
k:δ
−→perf σ, V ′ and V ′ w W ′. Perfect steps are lossy steps (with no losses). Be-

low we omit writing explicitely the loss subscript for lossy steps, and are simply
careful of writing −→perf for all perfect steps.

A run π of S (from some initial configuration (σ0, W0) often left implicit) is

a maximal sequence of steps, of the form σ0, W0
k1:δ1−−→ σ1, W1

k2:δ2−−→ σ2, W2
k3:δ3−−→

σ3, W3 · · · Maximality implies that π is either infinite, or finite and ends with a
blocked configuration, i.e. a configuration from which no more step is possible. A
perfect run (also, a faithful run) is a run where all steps are perfect (no losses).

By “termination”, we mean the absence of any infinite run starting from
some given initial configuration. We recall that

Theorem 2.2 ([AJ96b,Fin94]). Termination is decidable for lossy channel
systems.

2.3 Fair scheduling

There exist many different notions of fairness [Fra86]. Here we consider fair
scheduling of the components, which is the most natural fairness assumption for
asynchronous protocols.

A run of some system S is obtained by interleaving steps from the different
components A1, . . . , An. The intuition is that a fair run is a run where all com-
ponents are fairly treated in their contribution to the run. Formally, given an
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infinite run π = σ0, W0
k1:δ1−−→ σ1, W1

k2:δ2−−→ · · · , we say that:
– π is weakly fair w.r.t. component k iff either ki = k for infinitely many i, or

σi, Wi 6
k
−→perf for infinitely many i. That is, iff component Ak moves infinitely

often in π, or is infinitely often not enabled.
– π is strongly fair w.r.t. component k iff either ki = k for infinitely many i, or

σi, Wi 6
k
−→perf for almost all i. That is, iff component Ak moves infinitely often in

π, or is eventually never enabled.
Additionaly, all finite runs are (vacuously) fair. We say a run is weakly fair (resp.
strongly fair) if it is weakly (resp. strongly) fair w.r.t. all components A1, . . . , An

of S. Clearly, a strongly fair run is also weakly fair.

Remark 2.3. Observe that we do not consider that a component is enabled when
it can only perform lossy steps. This definition makes our decidability proofs a
bit more involved, but we find it more consistent with the role losses may or
may not play in the fairness of scheduling.

2.4 Communication layouts

The communication layout, or more simply “the layout”, of a channel system
S = 〈Σ, C, A1, . . . , An〉 is a graph depicting which components read from, and
write to, which channels. Formally L(S) is the bipartite directed graph having
the channels and the components of S as vertices, having an edge from Ak to c if

there is a rule r
?U !V
−−−→ s in ∆k that writes to c (i.e. V (c) 6= ε), and an edge from c

to Ak if there is a rule in ∆k that reads from c (i.e. U(c) 6= ε). Additionaly, L(S)

has an edge from c to Ak if ∆k has a rule r
c=ε?
−−→ s that checks c for emptiness.

For example, L1 in Fig. 2 is the layout of the system from Fig. 1. Note that

A1 A2

c1

c2

L1: A1 A2

c1

c2

L2:
c2 c1

A3

A1

A2L3:

Fig. 2. Three communication layouts

such a layout only describes possible reads and writes (those present in the rules)
that are not necessarily actual reads and writes from actual runs.

The layouts of channel systems provide an abstract view of their architecture
and are helpful in classifying them. Below we say that a channel c is multiplexed
if two (or more) components read from it. E.g. any system having L2 or L3

(from Fig. 2) as layout has a multiplexed channel since two components read
from c1. (Observe that situations where several components write to a same
channel are not considered a case of multiplexing.) Many systems have a simple
layout like L1 and have no multiplexed channel. Also many systems use different
channels for connecting different sender-receiver pairs, leading to layouts without
multiplexed channel.
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3 Fair termination without multiplexed channel

For a system S, strongly fair termination (resp. weakly) is the property that S

has no strongly (resp. weakly) fair infinite run.

Theorem 3.1. Strongly fair termination and weakly fair termination are decid-
able for lossy channel systems without multiplexed channel.

This first positive result is a consequence of the fact that, for systems without
multiplexed channel, termination is insensitive to whether the system is fairly
scheduled or not (and is therefore decidable by Theorem 2.2). This is proved in
Lemma 3.3 after we introduce the necessary definitions.

Definition 3.2. A lossy channel system S is insensitive to fairness (for termi-
nation) if the equivalences “S has a strongly fair infinite run iff S has a weakly
fair infinite run iff S has an infinite run” hold.
A communication layout L is insensitive to fairness if all systems having L as
layout are insensitive to fairness.

Lemma 3.3. If S = 〈Σ, C, A1, . . . , An〉 is a system with no multiplexed channel,
then S is insensitive to fairness.

Proof. Assume π = σ0, W0
k1:δ1−−→ σ1, W1

k2:δ2−−→ σ2, W2 . . . is an infinite run of S.
Let I ⊆ {1, . . . , n} be the set of (indexes of) components that are not treated
strongly fairly in π, i.e. k ∈ I iff k = ki for finitely many i and Ak is infinitely
often enabled along π. We let CI ⊆ C be the set of channels that are read by
components in I. Let l ∈ N be large enough so that ki 6∈ I for all i ≥ l and let

π′ be π where every Wi for i ≥ l has been replaced by W ′

i

def

= Wi[CI 7→ ε], a
variant of Wi where channels from CI have been emptied. π′ is a valid run of
S since losses can explain the changes in the channel contents, and since only
components from I (that never move after l) would have been affected by these
changes. We write I ′ for the set of components that are not treated strongly
fairly in π′ (observe that I ′ ⊆ I). Now we can build a strongly fair run π′′ by

inserting, for every k ∈ I ′, a step σi, Wi
k:δ
−→ σ′

i, Wi at a position i beyond l

where Ak is enabled (one such position exists). Such a step does not change Wi

(possibly by losing what δ would write) but it modifies σi(k) and we propagate
this change of Ak’s control state on all further σj . If, when in state σi(k), Ak is
still not treated strongly fairly, we repeat our procedure and insert further steps
by Ak. The limit of this construction (that possibly requires an infinite number
of insertions) is an infinite strongly fair π′′. ut

Theorem 3.1 is an important decidability result since systems without
multiplexed channel are natural and very common. In fact, these systems are
so common (see the examples in [ABJ98,AAB99]) that we feel allowed to claim
that, in most practical cases, termination of lossy channel systems does not
depend on fair scheduling.
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In Section 5 we show more precisely how the absence of multiplexed channels
is a necessary condition for Theorem 3.1. Before that, we show the undecidability
of strongly fair and weakly fair termination in the general case.

Theorem 3.4. Strongly fair termination is undecidable for lossy channel sys-
tems whose communication layout contains A1 � c → A2.

Proof. With a Turing machine M we associate the system SM depicted in Fig. 3.
The intended behavior of SM is the following: first A1 fills c with some number

A1:

?#

!#ut2
?#

!#

?ut1

!ut2

?ut2

!ut1

� ��� �
filling c

start accept

Simulation of M using c

as bounded workspace

� ������ cleaning c

?x
(all x 6= ut1,ut2)

A2:

!@

?#

!#?#
!#

?x
(all x 6= #, @)

!ut

# ut1 ut1 ut1

channel c

Fig. 3. Structure of SM in Theorem 3.4

of blank symbols ut1 using one # to mark the intended beginning of the string:
adding one ut1 requires two full rotations of the contents of c, replacing all ut1’s
with ut2’s and then replacing the ut2’s by ut1’s. Then A1 non-deterministically
decides that c is full enough and proceeds to the cleaning state (where the
ut2’s are replaced by plain ut’s) that prepares for the start state where M is
simulated using the contents of c as a bounded workspace, until the accept
state is eventually reached (if M accepts). At this stage, SM writes a parasitic
character @ on its channel, replaces every other letter by a ut (i.e. cleans the
contents of c) and starts the simulation anew. A2 does nothing useful but it can
consume from c (and will eventually under fair scheduling).

We claim that SM has a strongly fair run iff M accepts, which proves unde-
cidability. Clearly, if M accepts, SM has fair infinite runs where it fills c with
enough blanks before simulating M an infinite number of times. The parasitic @
that comes up between two successful simulations of M will be either removed
by losses, or consumed by A2 as a way to ensure strong fairness.

Now the more delicate part is to prove that if SM has a fair infinite run then
M accepts. So we assume there is a strongly fair run π (possibly lossy). This
run has to eventually move to the start state: indeed, if π avoids the start state
forever, then strong fairness implies that the # marker will eventually be read
by A2 and then the system will block (thanks to the ut1 ↔ ut2 swaps). Once π

starts simulating M , the contents of c cannot increase in size: it will diminish
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through losses (or through reads from A2). After some time, a lower bound is
reached and no more loss will ever occur. From now on, strong fairness can only
be ensured by having A2 read the parasitic @, so that the simulation from start
to accept must be performed an infinite number of times. Since no loss occurs,
these simulations of M are faithful and prove that M accepts. ut

Remark 3.5. The above proof does not describe in more details how the space-
bounded Turing machine is simulated because this is standard (since [BZ81]),
and because we do not really need to use Turing machines anyway: it is possible
to reduce from perfect channel systems. Replace the simulation of M in Fig. 3
by a single-component single-channel system S1 that works in bounded space (it
does not modify the number of messages stored in c). Then the system we built
has a strongly fair infinite run iff there exists a number m s.t. S1, running as a
perfect channel system, accepts when started with m messages in its channel.

Theorem 3.6. Weakly fair termination is undecidable for lossy channel systems
with two channels.

Proof (sketch). We prove undecidability for systems whose layout contains the
pattern L2 (from Fig. 2). As in the proof of Theorem 3.4, we associate a system
SM with a Turing machine M in such a way that SM has a weakly fair infinite
run iff M accepts. Here filling c can only proceed as long as d contains one #1

A1:

d?#1

d!#1d?#2

d!#2

c!ut

� ��� �
filling c

start accept

Simulation of M using c

as bounded workspace

� ������ cleaning c

c!@

c?#

c!#c?#
c!#

c?x
(all x 6= #,@)

c!ut

d?#1 d?#2

c?x
(all x)

A2:

# ut ut ut

channel c

#1 #2

channel d

Fig. 4. Structure of SM in Theorem 3.6

and one #2, but since A2 can always read one of these characters, weak fairness
requires that, eventually, filling c stops and SM proceeds to the simulation of
M . From this point, the reasoning goes on as in the earlier proof. ut

4 Weakly fair termination for single-channel systems

Theorem 4.1. Weakly fair termination is decidable for systems with one single
channel.
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Observe that, by Theorem 3.4, strongly fair termination is not decidable in
general for single-channel systems, and that, by Theorem 3.6, weakly fair termi-
nation is not decidable for systems with two channels.

We point out that Theorem 4.1 is not a consequence of insensitivity
to fairness. Indeed, there exist single-channel systems having only unfair
infinite runs: as an example, consider the system from Fig. 4, restrict A1 to
the loop that fills c and forget about c (only keep d). One obtains a single-
channel system that does not terminate unless weakly fair scheduling is assumed.

We now proceed with the proof of Theorem 4.1.
Consider some fixed single-channel system S = 〈Σ, {c}, A1, . . . , An〉 and an

initial configuration σ0, w0. We say an infinite run π = σ0, w0
k1:δ1−−→ σ1, w1

k2:δ2−−→
· · · is a bounded run if there exists some maximal size K ∈ N s.t. |wi| ≤ K for
all i. Otherwise π is unbounded. We say π is ultimately periodic if there are two
numbers l, p > 0 s.t. σi, wi, ki, δi = σi+p, wi+p, ki+p, δi+p for all i ≥ l.

We say a step σ, w
k:δ
−→ σ′, w′ is back-lossy 3 if δ is some r

?u !v
−−→ s, w is some

uu′ and w′ is u′v′ for some v′ v v (that is, losses may only occur during the
writing of v at the back of c, and not inside c). Also, all steps with δ of the form

r
c=ε?
−−→ s are (vacuously) back lossy. A run is back-lossy if all its steps are. It is

ultimately back-lossy if after some point all its steps are back-lossy.
The next three lemmas exhibit a sequence of transformations that yield an

ultimately periodic weakly fair run out of an unbounded run, entailing Corol-
lary 4.5. The proofs of these lemmas rely on the same extraction and modification
techniques on runs we used earlier.

Lemma 4.2. If S has an unbounded run, then it has an unbounded run that is
ultimately back-lossy.

Proof. Let π = σ0, w0
k1:δ1−−→ · · · be an unbounded run of S.

If π has infinitely many reads, every single letter in every wi will eventually
be lost or consumed. By removing the “to be lost” letters (save those that were
already in w0) we obtain an ultimately back-lossy π′. This does not conclude the
proof because π′ may be bounded (messages are lost earlier in π′ than in π).

If π′ is unbounded we are done. Otherwise, this means that there exists a
bound K ∈ N s.t. every wi contains at most K letters “to be consumed”. Since
π is unbounded, for any M ∈ N there is some wl long enough so that it contains
at least M consecutive of these “to be lost” letters. If we assume these letters
were not already in w0 (i.e. l is far enough) and that M is larger than K + 1
times the number of global states times the length of the longest v written by
any one rule, then writing these M consecutive letters in c required that π has
a sequence of writes uninterrupted by reads (or emptiness tests) longer than the
number of global states. Hence we find a loop of writes that can be repeated to
yield an unbounded back-lossy run.

3 The terminology “back-lossy” appears in [Sch01] and was inspired by the front-lossy
systems of [CFP96].
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The case where π only reads a finite number of times is simpler (and uses
similar ideas). ut

Lemma 4.3. If S has an unbounded run that is ultimately back-lossy, then it
has a weakly fair infinite run (perhaps not back-lossy).

Proof. Assume π = σ0, w0
k1:δ1−−→ · · · is an unbounded back-lossy infinite run and

write I ⊆ {1, . . . , n} for the set of components that are not treated weakly fairly.

If π only contains finitely many steps that actually consume message from c,
then it is easy to modify π so that we obtain a weakly fair π′: a procedure similar
to what we did in the proof of Lemma 3.3 is enough, and it can be implemented
since, beyond some position l, steps originally in π do not consume from c and
are not perturbed when we empty it.

Otherwise π contains infinitely many steps that consume from c and every
message in the wi’s will eventually be read, not lost. We call readee any u ∈ Σ∗

that appears in some rule r
?u !v
−−→ s of S. Since π is back-lossy, every wi can

be written under the form ui,1 . . . ui,ni
vi where the ui,j ’s are readees (that will

eventually be consumed as such along π) and vi is some suffix that is not yet
a full readee. We further decorate wi by inserting after every ui,j the global
state that S will reach just after ui,j is consumed, obtaining some γi of the form
ui,1(ρi,1)ui,2(ρi,2) . . . ui,ni

(ρi,ni
)vi.

We extract from (γi)i=0,1,... an infinite subsequence along which the size al-
ways increases (possible since π is unbounded). Using Higman’s lemma, we fur-
ther extract an infinite subsequence linearly ordered by a variant of the subword
ordering where we take as letters the pairs u(ρ) (and the strict prefixes of readees
that may occur as vi’s). From this we pick a pair γl and γl′ s.t. γl v γl′ . We pick l

large enough so that components from I are never fired after l, and l′ large enough
so that all readees in wl are consumed when moving from σl, wl to σl′ , wl′ and all
components not in I are fired or not enabled at least once between l and l′ (and so
that wl′ is long enough, see below). Here γl has the form ul,1(ρl,1) . . . ul,nl

(ρl,nl
)vl

and γl′ is some α0ul,1(ρl,1)α1 . . . αl−1ul,nl
(ρl,nl

)αlvl where the αi’s witness that
γl v γl′ .

If wl′ is long enough, then at least one of the αi’s (say αp) must be longer than
the longest readee. Just after the corresponding up has been consumed, the steps
from σl, wl to σl′ , wl′ in π visit some intermediary configuration σl′′ , wl′′ where
σl′′ = ρl,p and wl′′ = αpul,p+1αp+1ul,p+1 . . . We now build a looping sequence
σl′ , wl′ −→ . . . −→ σ′, wl′ that reuses the rules δl+1, δl+2, . . . , δl′′ and that treats all
components fairly. This is done by using losses to get rid of the αi’s that appear
at the head of c. But when αp appears, we insert a step by any Ak ∈ I: indeed, π

must contain a configuration after l′ of the form (ρl,p, αp . . .) and we know Ak is
always enabled along π. This inserted step does not consume ul,p+1 (since αp is
long enough) and it is then possible to go on with the loop. Note that the control
state of Ak has changed to some new s, and all further configurations must be
updated, so that σ′ is σl′ [k 7→ s]. This does not compromise the firability of
δl+1 · · · δl′′ . We can repeat this process and insert steps for any component from
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I, and we repeat this infinitely often if needs be. The limit of the construction
is a weakly fair infinite run. ut

Lemma 4.4. If S has a weakly fair infinite run, then it has a weakly fair infinite
run that is ultimately periodic.

Proof. This is standard using Higman’s lemma: we find two positions l1 and l2
s.t. σl1 = σl2 and wl1 v wl2 . We further pick l1 and l2 large enough so that all
components are fired or not enabled at least once between l1 and l2. Losses after
step l2 allow to reach σl2 , wl1 , closing the loop for an ultimately periodic run
and maintaining weak fairness. ut

Corollary 4.5. Either S only has bounded runs, or it has an ultimately periodic
weakly fair infinite run (or both).

Now the proof of Theorem 4.1 is easy: Boundedness of single-channel systems is
not decidable, but it is obviously semi-decidable, and for a bounded S weakly
fair termination is easily checked after the finite graph of configurations has been
constructed. Similarly, the existence of a weakly fair ultimately periodic run π

is easily seen to be semi-decidable since it suffices to exhibit a finite prefix of π.
Combining these two semi-decision methods, we obtain a decision algorithm.

5 Classifying communication layouts

In this section, we characterize the layouts that induce decidability of strongly
fair termination.

Let L be a communication layout. We say that L has multiplexing inside a
cycle iff there exists a multiplexed channel c that lies on a (directed) cycle in L.

Theorem 5.1. Strongly fair termination of systems having communication lay-
out L is decidable iff L does not have multiplexing inside a cycle.

cL1 L2

Fig. 5. L is L1 ⊕c L2

Proving Theorem 5.1 requires that we comple-
ment the results from section 3 with the following
key decomposition lemma.

Let L be a layout s.t. some channel c does not
lie on a (directed) cycle in L. Then L can be seen as
L1 ⊕c L2, i.e. the gluing via c of two disjoint layouts
L1 and L2 (both of them containing c), as illustrated
in Fig. 5.

Lemma 5.2. L is insensitive to fairness iff L1 and L2 are.

Proof. We only need to prove the (⇐) direction. For this we consider a system
S with L(S) = L, and prove S is insensitive to fairness. Let S1 and S2 be the
subsystems obtained from S by keeping only the components (and the channels)
from L1 (resp. L2). Let π be an infinite run by S. There are two cases:
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π contains infinitely many steps from S1: then S1 has an infinite run
(since steps by S2 cannot influence S1) and it has an infinite fair run (since
it is insensitive to fairness). Inserting as many steps by S2 as necessary, one
turns this run into a π′ that is fair w.r.t. all components of S.

π contains finitely many steps from S1: then π can be written as the con-
catenation π1.π2 of a finite prefix π1 where all steps by S1 can be found,
followed by an infinite run π2 of S2 (from some starting configuration). By
insensitivity, π2 can be replaced by a fair π′

2 (fair w.r.t. S2). We obtain a run
fair w.r.t. all of S by inserting in π′

2 (that is, after π1) as many steps by S1

as necessary, using losses to make sure these extra steps do not add to c. ut

Corollary 5.3. Layouts without multiplexing inside a cycle are insensitive to
fairness.

Proof. By induction on the number of multiplexed channels in the layout.
Lemma 5.2 lets us reduce to the base case where the multiplexed channels (if
any) are degenerate, i.e. no component writes to them (e.g. in the above picture,
c is degenerate in L2). Insensitivity for systems with degenerate multiplexed
channels is proved exactly like with Theorem 3.1. ut

Proof (of Theorem 5.1). The (⇐) direction was proved as Corollary 5.3. The
(⇒) direction is an easy extension of Theorem 3.4. Assume that L has a cycle
A1 −→ c1 −→ A2 −→ c2 · · ·An −→ cn −→ A1 s.t. one channel, say cn, is multiplexed.
Then cn is read by some component A distinct from A1. If A itself is not on the
cycle, then it is easy to adapt the proof of Theorem 3.4 and prove undecidability.
Otherwise A is some Ai for i > 1 and we can find a shorter cycle Ai −→ ci −→
Ai+1 · · ·An −→ cn −→ Ai, where this time the outside component A is A1, and we
conclude as before. ut

Remark 5.4. Lemma 5.2 and Corollary 5.3 apply to strong and weak fairness
equally. The reason why the characterization provided by Theorem 5.1 does not
hold for weakly fair termination is that Theorem 3.4 only deals with strong
termination (which cannot be avoided, see Theorem 4.1).

6 Other verification problems with fair scheduling

Termination is not the only verification problem that is known to be decidable
for lossy channel systems, but problems like reachability only consider finite
runs. The other known decidable problem for which fairness assumptions are
meaningful is inevitability (shown decidable in [AJ96b]). Here one asks whether
all runs eventually visit a configuration belonging to a given set G.

Termination is a special case of inevitability (with G being the set of blocked
configurations), but our positive results for fair termination do not generalize to
fair inevitability:

Theorem 6.1. Inevitability under strongly fair or weakly fair scheduling is un-
decidable for systems with (more than one component and) a communication
layout containing A1 � c.
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A1
r

start

q2

q1A2:

εε

Fig. 6. Reducing RCS to fair inevitability

Proof (sketch). By a reduction from RCS. Let A1 be any given component having
some control state r. We build a system S by associating A1 and the system A2

from Fig. 6 (observe that A2 does not use the channel and is always enabled).
Now let G be the set of all configurations (〈s, s′〉, w) of S s.t. s 6= r and s′ = q2.
Then all fair runs of S inevitably visit G iff A1 does not have a run visiting r

infinitely often (unless there is a self-loop on r). ut

This proof idea can be adapted to layouts that contains a cycle, so that in-
evitability under fair scheduling is undecidable for all “interesting” layouts.

7 Conclusions

We studied the decidability of termination under strongly and weakly fair
scheduling. We showed that, when systems have no multiplexed channels, termi-
nation does not depend on whether scheduling is fair or not. In practice, most
systems do not have multiplexed channels since they use distinct channels for
any pair of components that communicate.

We also showed that, for systems where an arbitrary number of components
communicate through a single channel, weakly fair termination is decidable.

These results are technically involved, and are close to the border of de-
cidability. Indeed, two channels make weakly fair termination undecidable, and
strongly fair termination is decidable iff no multiplexed channel occurs inside a
communication cycle.
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