Skip to main content

Low Stretch Spanning Trees

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2420))

Abstract

The paper provides a brief review of problems and results concerning low stretch and low communication spanning trees for graphs.

Supported in part by a grant from the Israel Science Foundation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon, R.M. Karp, D. Peleg, and D. West. A graph-theoretic game and its application to the k-server problem. SIAM J. on Computing, pages 78–100, 1995.

    Google Scholar 

  2. S. Arora and C. Lund. Hardness of approximation. In Dorit Hochbaum, editor, Approximation Algorithms for NP-Hard Problems, pages 399–446. PWS Publishing Company, Boston, MA, 1997.

    Google Scholar 

  3. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness of approximation problems. In Proc. 33rd IEEE Symp. on Foundations of Computer Science, 1992.

    Google Scholar 

  4. B. Awerbuch and Y. Azar. Buy-at-bulk network design. In Proc. 38th IEEE Symp. on Foundations of Computer Science, pages 542–547, 1997.

    Google Scholar 

  5. B. Awerbuch, A. Baratz, and D. Peleg. Efficient broadcast and light-weight spanners. Unpublished manuscript, November 1991.

    Google Scholar 

  6. B. Awerbuch and D. Peleg. Sparse partitions. In 31st IEEE Symp. on Foundations of Computer Science, pages 503–513, October 1990.

    Google Scholar 

  7. Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In Proc. 37th IEEE Symp. on Foundations of Computer Science, pages 184–193, 1996.

    Google Scholar 

  8. Y. Bartal. On approximating arbitrary metrics by tree metrics. In Proc. 30th ACM Symp. on Theory of Computing, pages 161–168, 1998.

    Google Scholar 

  9. Y. Bartal, B. Bollobas, and M. Mendel. Ramsey-type theorems for metric spaces with applications to online problems. In Proc. 42nd IEEE Symp. on Foundations of Computer Science, 2001.

    Google Scholar 

  10. Y. Bartal, M. Charikar, and D. Raz. Approximating min-sum k-clustering in metric spaces. In Proc. 33rd ACM Symp. on Theory of Computing, 2001.

    Google Scholar 

  11. J. Bourgain. On Lipschitz embeddings of finite metric spaces in Hilbert spaces. Israel J. Math., pages 46–52, 1985.

    Google Scholar 

  12. L. Cai. Tree 2-spanners. Technical Report TR 91-4, Simon Fraser University, Burnaby, B.C., Canada, 1991.

    Google Scholar 

  13. L. Cai and D. Corneil. Isomorphic tree spanner problems. Algorithmica, 14:138–153, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Cai and D. Corneil. Tree spanners. SIAM J. on Discr. Math., 8:359–387, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Charikar, C. Chekuri, A. Goel, and S. Guha. Rounding via trees: deterministic approximation algorithms for group steiner trees and k-median. In Proc. 30th ACM Symp. on Theory of Computing, pages 114–123, 1998.

    Google Scholar 

  16. M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin. Approximating a finite metric by a small number of tree metrics. In Proc. 39th IEEE Symp. on Foundations of Computer Science, pages 379–388, 1998.

    Google Scholar 

  17. G. Even, J. Naor, S. Rao, and B. Schieber. Divide-and-conquer approximation algorithms via spreading metrics. In Proc. 36th IEEE Symp. on Foundations of Computer Science, pages 62–71, 1995.

    Google Scholar 

  18. S.P. Fekete and J. Kremer. Tree spanners in planar graphs. In Proc. 24th Int. Workshop on Graph-Theoretic Concepts in Computer Science. Springer-Verlag, 1998.

    Google Scholar 

  19. N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group Steiner tree problem. In Proc. 9th ACM-SIAM Symp. on Discrete Algorithms, 1998.

    Google Scholar 

  20. T.C. Hu. Optimum communication spanning trees. SIAM J. on Computing, pages 188–195, 1974.

    Google Scholar 

  21. P. Indyk. Algorithmic applications of low-distortion geometric embeddings. In Proc. 42nd IEEE Symp. on Foundations of Computer Science, 2001.

    Google Scholar 

  22. D.S. Johnson, J.K. Lenstra, and A.H.G. Rinnooy-Kan. The complexity of the network design problem. Networks, 8:275–285, 1978.

    Article  MathSciNet  Google Scholar 

  23. G. Konjevod, R. Ravi, and F.S. Salman. On approximating planar metrics by tree metrics. Information Processing Letters, 80:213–219, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  24. H.-O. Le and V.B. Le. Optimal tree 3-spanners in directed path graphs. Networks, 34:81–87, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  25. N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic applications. Combinatorica, 15:215–245, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  26. C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. J. Comput. and Syst. Sci., 43:425–440, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  27. D. Peleg. Approximating minimum communication spanning trees. In Proc. 4th Colloq. on Structural Information & Communication Complexity, pages 1–11, July 1997.

    Google Scholar 

  28. D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

    Google Scholar 

  29. D. Peleg and E. Reshef. Deterministic polylog approximation for minimum communication spanning trees. In Proc. 25th Int. Colloq. on Automata, Languages & Prog., pages 670–681, 1998.

    Google Scholar 

  30. D. Peleg and E. Reshef. A variant of the arrow distributed directory protocol with low average-case complexity. In Proc. 26th Int. Colloq. on Automata, Languages & Prog., pages 615–624, 1999.

    Google Scholar 

  31. D. Peleg and A.A. Schäffer. Graph spanners. J. of Graph Theory, 13:99–116, 1989.

    Article  MATH  Google Scholar 

  32. D. Peleg and D. Tendler. Low stretch spanning trees for planar graphs. Technical Report MCS01-14, The Weizmann Institute of Science, 2001.

    Google Scholar 

  33. D. Peleg and J.D. Ullman. An optimal synchronizer for the hypercube. SIAM J. on Computing, 18(2):740–747, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  34. Y. Rabinovich and R. Raz. Lower bounds on the distortion of embedding finite metric spaces in graphs. Discrete and Computational Geometry, 19:79–94, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  35. E. Reshef. Approximating minimum communication cost spanning trees and related problems. Master’s thesis, The Weizmann Institute of Science, Rehovot, Israel, 1999.

    Google Scholar 

  36. P.D. Seymour. Packing directed circuites fractionally. Combinatorica, 15:281–288, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  37. R. Wong. Worst-case analysis of network design problem heuristics. SIAM J. on Alg. and Discr. Meth., 1:51–63, 1980.

    Article  MATH  Google Scholar 

  38. B.Y. Wu, K.-M. Chao, and C.Y. Tang. Constructing light spanning trees with small routing cost. In Proc. 16th Symp. on Theoretical Aspects of Computer Science, pages 334–344, 1999.

    Google Scholar 

  39. B.Y. Wu, K.-M. Chao, and C.Y. Tang. Approximation algorithms for some optimum communication spanning tree problems. Discrete Applied Mathematics, 102:245–266, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  40. B.Y. Wu, K.-M. Chao, and C.Y. Tang. Approximation algorithms for the shortest total path length spanning tree problem. Discrete Applied Mathematics, 105:273–289, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  41. B.Y. Wu, K.-M. Chao, and C.Y. Tang. A polynomial time approximation scheme for optimal product-requirement communication spanning trees. J. of Algorithms, 36:182–204, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  42. B.Y. Wu, G. Lancia, V. Bafna, K.M. Chao, R. Ravi, and Y. Tang. A polynomial-time approximation scheme for minimum routing spanning trees. In Proc. 9th ACM-SIAM Symp. on Discrete Algorithms, pages 21–32, San Francisco, California, January 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peleg, D. (2002). Low Stretch Spanning Trees. In: Diks, K., Rytter, W. (eds) Mathematical Foundations of Computer Science 2002. MFCS 2002. Lecture Notes in Computer Science, vol 2420. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45687-2_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-45687-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44040-6

  • Online ISBN: 978-3-540-45687-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics