
Pipelining for Locality Improvement
in RK Methods

Matthias Korch1, Thomas Rauber1, and Gudula Rünger2

1 Universität Halle-Wittenberg, Institut für Informatik,
{korch,rauber}@informatik.uni-halle.de

2 Technische Universität Chemnitz, Fakultät für Informatik,
ruenger@informatik.tu-chemnitz.de

Abstract. We consider embedded Runge-Kutta (RK) methods for the
solution of ordinary differential equations (ODEs) arising from space dis-
cretizations of partial differential equations and study their efficient im-
plementation on modern microprocessors with memory hierarchies. For
those systems of ODEs, we present a block oriented pipelining approach
with diagonal sweeps over the stage and approximation vector computa-
tions of RK methods. Comparisons with other efficient implementations
show that this pipelining technique improves the locality behavior consid-
erably. Runtime experiments are performed with the DOPRI5 method.

1 Introduction

Time-dependent partial differential equations (PDEs) with initial conditions can
be solved by discretizing the spatial domain using the method of lines. This leads
to an initial value problem (IVP) for a system of ODEs in the time domain of
the form

y′(x) = f(x,y(x)) with y(x0) = y0 (1)

where y : IR → IRn is the unknown solution, y0 is the initial vector at start
time x0, n ≥ 1 is the system size, and f : IR × IRn → IRn is the right hand side
function describing the structure of the ODE system.

RK methods with embedded solutions are one of the most popular one-step
methods for the numerical integration of non-stiff IVPs of the form (1). At each
time step, these methods compute a discrete approximation vector ηκ+1 ∈ IRn

for the solution function y(xκ+1) at position xκ+1 using the previous approxi-
mation vector ηκ. We consider an s-stage RK method that uses s stage vectors
v1, . . . ,vs ∈ IRn with

vl = f(xκ + clhκ, ηκ + hκ

l−1∑
i=1

alivi) , l = 1, . . . , s , (2)

to compute two approximation vectors of different order according to:

ηκ+1 = ηκ + hκ ·
s∑

l=1

blvl , η̂κ+1 = ηκ + hκ ·
s∑

l=1

b̂lvl . (3)

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 724–733.
c© Springer-Verlag Berlin Heidelberg 2002

Pipelining for Locality Improvement in RK Methods 725

η̂κ+1 is an additional vector for error control. The s–dimensional vectors b =
(b1, . . . , bs), b̂ = (b̂1, . . . , b̂s), c = (c1, . . . , cs) and the s × s matrix A = (ali)
specify the particular RK method. For non-stiff ODE systems of the form (1),
explicit RK methods with an error control and stepsize selection mechanism are
robust and efficient [6] and guarantee that the obtained discrete approximation
of y is consistent with a predefined error tolerance [6,4].

In this article, we investigate the efficient implementation of RK methods on
recent microprocessors. Modern microprocessors exhibit a complex architecture
with multiple functional units and a storage hierarchy with registers, two or
three caches of different size and associativity, and a main memory. Memory
hierarchies provide improved average memory access times due to the locality of
reference principle. As a consequence, spatial and temporal locality of a program
have a large influence on the execution time.

Because of their large impact on the performance, optimizations to increase
the locality of memory references have been applied to many methods from nu-
merical linear algebra including factorization methods like LU, QR and Cholesky
[3] and iterative methods like 2D Jacobi [5] and multi-grid methods [8]. Based on
BLAS, there are efforts like PHiPAC [2] and ATLAS [9] to provide efficient im-
plementations of BLAS routines. Approaches for dense linear algebra algorithms
or grid based methods are given in [3,5]. Locality optimizations for general pur-
pose RK methods solving non-stiff ODEs with step-size control are investigated
in [7]. In this paper, we consider ODE systems resulting from discretized PDEs
which have a specific structure with a low coupling density induced by the cou-
pling of the original PDE system and we investigate how this structure can be
exploited to increase the locality of memory references. In particular, we use the
specific access structure of f for a block-oriented pipelined computation of stage
and approximation vectors. This is the basis for a reordering of the computation
such that the working space of the algorithm is significantly decreased, which
leads to a considerably better locality behavior. We show that these new com-
putation schemes lead to significant reductions of the execution time on modern
microarchitectures like the Pentium III or the UltraSPARC III processors.

2 Data Access Structure and Pipelining

For an embedded RK method applied to an ODE system of type (1), several
equivalent program variants realizing different execution orders have been de-
rived in [7] and the impact on the resulting execution time has been investigated
for recent processors with memory hierarchies. The use of an arbitrary right
hand side function f of (1) implies the conservative assumption that every com-
ponent of f depends on all components of its argument vector and this limits
the possibilities of code arrangements.

In this paper, we consider ODE systems (1) with a more specific right hand
side function f depending on only a few components of the argument vector.
Those ODE systems arise when applying the method of lines to a time-dependent
PDE. As a typical example, we use a non-stiff ODE system resulting from a 2D

726 M. Korch, T. Rauber, and G. Rünger

for (i = 0; i < s; i++) {
for (j = 0; j < n; j++) wi[j] = η[j];
for (l = 0; l < i; l++)

for (j = 0; j < n; j++) wi[j] += hailvl[j];
for (j = 0; j < n; j++) vi[j] = fj(x + cih, wi); }

for (j = 0; j < n; j++) { t[j] = 0.0; u[j] = 0.0; }
for (i = 0; i < s; i++)

for (j = 0; j < n; j++) { t[j] += b̃ivi[j]; u[j] += bivi[j]; }
for (j = 0; j < n; j++) { η[j] += hu[j]; ε[j] = ht[j]; }

Fig. 1. Basic program variant (b̃ = b − b̂).

Brusselator equation, a reaction-diffusion equation for two chemical substances.
A standard five-point-star discretization of the spatial derivatives on a uniform
N × N grid with mesh size 1/(N − 1) leads to an ODE system of dimension
n = 2N2 for the discretized solution {Uij}i,j=1,...,N and {Vij}i,j=1,...,N , see [6].
We start our investigations with an implementation variant from [7] for which
pipelining is possible if the access structure of f fulfills some requirement, see
also Fig. 1.

Basic Program Variant: The RK method (2) and (3) is implemented in a straight-
forward way with a set of stage vectors v1, . . . ,vs and a separate set of argument
vectors w1, . . . ,ws for function f with vi = f(xκ + cihκ,wi), i = 1, . . . , s, so
that the loop structure has a minimal number of data dependencies which en-
ables many loop restructurings. In the program code, the stages are computed
successively. At each stage i = 1, . . . , s a nested loop is executed that computes
the elements of the argument vectors wi by calculating the weighted sum of the
stage vectors vj , j = 1, . . . , i−1. The working space of stage i of this implemen-
tation consists of i · n stage vector elements, n argument vector elements, and n
elements of the approximation vector.

For comparison, we include a specialized program variant from [7].

Specialized Program Variant: After applying the transformation vi = f(xκ +
cihκ,wi), i = 1, . . . , s, see [7], the loop structure is re-arranged such that only
one scalar value is needed to store all stage vector components temporarily.
Moreover, a specific RK method with fixed coefficients and fixed number of
stages (DOPRI5) is coded with further optimizations like the unrolling of loops
over stages.

Storage Schemes. We consider two different linearizations of the grid points
{Uij}i,j=1,...,N and {Vij}i,j=1,...,N . The row-oriented organization

U11, U12, . . . UNN , V11, V12, . . . , VNN (4)

results in function components fl accessing argument components l − N, l −
1, l, l + 1, l + N, and l + N2 (l − N2), if available, for l = 1, . . . , N2 (l = N2 +
1, . . . , 2N2). This is a typical access structure for grid-based computations. A
specific disadvantage concerning the locality of memory references is that for

Pipelining for Locality Improvement in RK Methods 727

the computation of each component fl a component of the argument vector in
distance N2 is accessed. A mixed row-oriented organization

U11, V11, U12, V12, . . . , Uij , Vij , . . . UNN , VNN (5)

stores corresponding components of U and V next to each other and results in
function component fl accessing argument components l−2N, l−2, l, l+1, l+2, l+
2N (if available) for l = 1, 3, . . . , 2N2 − 1 and l − 2N, l − 2, l − 1, l, l + 2, l + 2N
(if available) for l = 2, 4, . . . , N2. For this access structure the most distant
components of the argument vector to be accessed for the computation of one
component of f have a distance equal to 2N .

Pipelining. For the basic computation scheme with storage scheme (5), a
pipelined computation based on a division of the stage, the argument and the ap-
proximation vectors into N blocks of size 2N can be exploited. The computation
of an arbitrary block J ∈ {1, . . . , N} of ηκ+1 and η̂κ+1 requires the correspond-
ing block J of vs, which itself depends on block J of ws and, if available, the
neighboring blocks J − 1 and J + 1 of ws because of the access pattern of f .
The computation of the blocks J − 1, J , J +1 of ws requires the corresponding
blocks of vs−1. But these blocks cannot be computed before the computation of
the blocks J − 2 to J + 2 of ws−1 is finished. Altogether, each block J of ηκ+1
and η̂κ+1 depends on at most

∑s
i=1(2i + 1) = s(s + 1) + s = s(s + 2) blocks of

w1, . . . ,ws of size 2N and
∑s

i=1(2i − 1) = s(s +1) − s = s2 blocks of v1, . . . ,vs

of size 2N , see Fig. 2 (left).
This dependence structure can be exploited in a pipelined computation or-

der for the blocks of the stage vectors v1, . . . ,vs and the argument vectors
w1, . . . ,ws in the following way: the computation is started by computing the
first s + 1 blocks of argument vector w1. Since the computation of component
(v1)l requires the evaluation of fl(xκ,w1) and since f has the specific access

J+1

4

3

2

1 2 3 NJ

v

v

v

1

v
w

w

w

w

3

2

1

4

η
k+1

ηk+1

1 2 3 N

w

w

w

w

3

2

1

4

ηk+1

η
k+1

v

v

v

v

1

2

3

4

Fig. 2. Left: Dependence structure for storage scheme (5) in the case s = 4. If block
J of ηκ+1 and η̂κ+1 has been computed previously, the computation of block J + 1
requires accessing one additional block of each of the stage vectors v1, . . . ,v4 and the
argument vectors w1, . . . ,w4 only. Right: Blocks accessed to compute the first and the
second blocks of ηκ+1 and η̂κ+1.

728 M. Korch, T. Rauber, and G. Rünger

j

v(1) v(2) v(3) v(4)
original

modified

f

f

f

f

stage vectors

w(4)

w(1)

w(2)

i

k+1
accumulation of approximation vector

l

stage vectors

w(3)

η
k

η
1 2 3 NJ

k+1
η

1
v1
w2
v2
w3
v3
w4
v4

η
k+1

w

Fig. 3. Left: Illustration of pipelined computation for s = 4. The dimension of the
vectors is shown to demonstrate the pipelined computation from Fig. 2. Filled boxes
denote blocks of (intermediate) result vectors. The first block of ηκ+1 depends on all
filled blocks shown in the figure. The filling structure of the vectors w1, . . . ,ws shows
the triangular structure given in Fig. 2 (right). Right: Illustration of the working space
of one pipelining step. Argument blocks marked by a circle are accessed during the
function evaluation executed to compute the stage vector blocks tagged by a cross.
Stage vector blocks used to compute blocks of argument and approximation vectors
are marked by a square.

structure described above, the computation of s blocks of v1 is enabled, which
again enables the computation of s blocks of w2 and so on. Finally one block of
vs is computed and used to compute the first block of ηκ+1 and η̂κ+1. The next
block of ηκ+1 and η̂κ+1 can be determined by computing only one additional
block of w1 which enables the computation of one additional block of v1, . . . ,vs

and w2, . . . ,ws, see Fig. 2 (right). This computation is repeated until the last
blocks of ηκ+1 and η̂κ+1 are computed. Figure 3 (left) shows the iteration space
of the pipelined computation scheme. The boxes attached to nodes illustrate the
vector dimension of stage vectors and approximation vectors.

Working Space. The advantage of the pipelining approach is that only those
blocks of the argument vectors are kept in the cache which are needed for further
computations of the current step.

One step of the pipelining computation scheme computes s stage vector
blocks, s argument blocks and one block of ηκ+1 and η̂κ+1. Since the computation
of one block J of one stage vector accesses the blocks J − 1, J , and J +1 of the
corresponding argument vector, altogether 3s argument blocks must be accessed
to compute one block of ηκ+1 and η̂κ+1. Additionally,

∑s
i=1 i = s(s+1)/2 blocks

of the stage vectors are accessed because the computation of one argument block
J requires the blocks J of all previous stage vectors. Consequently, the working
space of the pipelining computation scheme consists of 2+3s+s(s+1)/2 blocks
of size 2N , see Fig. 3 (right). For the DOPRI5 method with s = 7 stages, at

Pipelining for Locality Improvement in RK Methods 729

most 51 blocks would have to be kept in cache to minimize the number of cache
misses. This is usually a small part of the N blocks of size 2N that each stage
vector contains. Taking ηκ+1 and η̂κ+1 into consideration, the proportion of the
total number of blocks that have to be held in cache is

(2 + 3s + s(s + 1)/2)
(2s + 2)N

= O
(s

4N

)

with usually s 	 N .

Implementation. The pipelining approach has been implemented in C in the
following two program variants:

Basic Pipelining: The main body (Fig. 4 (a)) of the implementation consists
of three phases: initialization of the pipeline, diagonal sweep over the argument
vectors, and finalization of the pipeline. We introduce the following three macros
(Fig. 4 (b)): STAGE0(A) is used to compute one block of vector w0. Starting at
offset A, STAGE(A, m) computes one block of the stage vector vm−1 and one
block of the argument vector wm. The macro FINAL(A) evaluates the function
values of one block of the last argument vector to obtain the corresponding stage
vector block and finally computes one block of ηκ+1 and one block of the local
error estimate εκ+1 = ηκ+1 − η̂κ+1.

Specialized Pipelining: The second implementation is a pipelined version of the
specialized implementation, which is optimized for a fixed number of s = 7 stages
and exploits locality in the solution of Brusselator-like systems.

k = s · 2N ;

for (j = 0; j < k; j += 2N)
STAGE0(j);

for (i = 1, l = k − 2N ; i < s; i++, l -= 2N)
for (j = 0; j < l; j += 2N)

STAGE(j, i);

for (j = k, l = k + 2N ; j < n, j += l)
{

STAGE0(j);
for (i = 1, j -= 2N ; i < s; i++, j -= 2N)

STAGE(j, i);
FINAL(j);

}

for (l = 1, k = n − 2N ; l < s; l++)
{

for (i = l, j = k; i < s; i++, j -= 2N)
STAGE(j, i);

FINAL(j);
}
FINAL(k);

(a) Body

STAGE0(A):
for (p = A; p < A + 2N ; p++)

w0[p] = η[p];

STAGE(A, m):
for (p = A; p < A + 2N ; p++)

wm[p] = η[p];
for (p = A; p < A + 2N ; p++)

vm−1[p] = fp(x + cm−1h, wm−1);
for (r = 0; r < m; r++)

for (p = A; p < A + 2N ; p++)
wm[p] += hamrvr[p];

FINAL(A):
for (p = A; p < A + 2N ; p++) {

vs−1[p] = fp(x + cs−1h, ws−1);
t[p] = 0.0; u[p] = 0.0; }

for (r = 0; r < s; r++)
for (p = A; p < A + 2N ; p++) {

t[p] += b̃rvr[p];
u[p] += brvr[p]; }

for (p = A; p < A + 2N ; p++) {
η[p] += hu[p];
ε[p] = ht[p]; }

(b) Macros

Fig. 4. Basic pipelining.

730 M. Korch, T. Rauber, and G. Rünger

3 Runtime Experiments

In this section, we investigate the performance enhancements achieved by the
pipelining approach and compare the results with the general implementations
for the two different storage schemes (4) and (5) of the Brusselator function. Dif-
ferent target platforms with varying memory hierarchies have been investigated:

1. UltraSPARC III at 750MHz, 64KB L1 data cache (4-way associative), 32KB
L1 instruction cache (4-way associative), 8MB L2 cache (2-way associative),

2. UltraSPARC II at 450Mhz, 16KB L1 data cache (1-way associative), 16KB
L1 instruction cache (2-way associative), 4MB L2 cache (1-way associative),

3. Pentium III at 600MHz, 16KB L1 data cache (4-way associative), 16KB L1
instruction cache (4-way associative), 256KB L2 cache (8-way associative),

4. MIPS R5000 at 300MHz, 32KB L1 data cache (2-way associative), 32KB
L1 instruction cache (2-way associative), 1MB L2 cache.

For the comparison, we present measurements for the basic version with stor-
age scheme (4) (basic row) and storage scheme (5) (basic mixed row), for the
specialized version with storage scheme (4) (specialized row), and with storage
scheme (5) (specialized mixed row), for the pipelined version (pipelined), and
for the pipelined specialized version (pipelined specialized). As RK method we
use the DOPRI5 method with s = 7 stages. Figure 5 shows the execution times
for one time step for the Brusselator equation on the target systems introduced
above. Figure 6 shows the number of instructions executed and the L1 and L2
cache misses measured on the UltraSPARC III, and Fig. 7 shows those measure-
ments for the Pentium III system. The data in Figs. 6 and 7 are obtained using
the PCL library [1].

Comparison of Storage Schemes. Except for the Pentium III system, on
all machines the mixed row-oriented storage scheme is significantly faster than
the pure row-oriented scheme. The best results have been obtained on the MIPS
processor. On this processor the use of the mixed row-oriented storage scheme
leads to 10.13% faster execution times for the basic implementation and 12.77%
for the specialized implementation when the size of the system is n = 294 912.
The execution times on the Pentium III system are very similar to each other
for both storage schemes.

Figure 6 shows that the numbers of cache misses on the UltraSPARC III are
very similar for both storage schemes. There are only slight improvements for
the L2 and L1 data cache misses. The number of L1 instruction cache misses for
the basic implementation with the mixed row-oriented storage scheme is even
noticeably higher than the number measured with the original storage scheme.
Thus, the improvements of the execution times achieved with the mixed row-
oriented storage scheme on this machine seem to be caused by the lower number
of instructions executed. The difference in the numbers of instructions executed
for both storage schemes is caused by the different code of the function f and,
as a consequence, the different number of machine instructions the two imple-
mentations of f are compiled to.

Pipelining for Locality Improvement in RK Methods 731

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50000 100000 150000 200000 250000 300000

E
xe

cu
tio

n
tim

e
pe

r
st

ep
 in

 s

n

basic row
basic mixed row
specialized row

specialized mixed row
pipelined

pipelined specialized

(a) UltraSPARC III

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 50000 100000 150000 200000 250000 300000

E
xe

cu
tio

n
tim

e
pe

r
st

ep
 in

 s

n

basic row
basic mixed row
specialized row

specialized mixed row
pipelined

pipelined specialized

(b) UltraSPARC II

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50000 100000 150000 200000 250000 300000

E
xe

cu
tio

n
tim

e
pe

r
st

ep
 in

 s

n

basic row
basic mixed row
specialized row

specialized mixed row
pipelined

pipelined specialized

(c) Pentium III

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50000 100000 150000 200000 250000 300000

E
xe

cu
tio

n
tim

e
pe

r
st

ep
 in

 s

n

basic row
basic mixed row
specialized row

specialized mixed row
pipelined

pipelined specialized

(d) MIPS R5000

Fig. 5. Execution times of the RK implementations.

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

3e+09

3.5e+09

4e+09

4.5e+09

0 10000 20000 30000 40000 50000 60000 70000 80000

In
st

ru
ct

io
ns

n

basic row
basic mixed row
specialized row

specialized mixed row
pipelined

pipelined specialized

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

0 50000 100000 150000 200000 250000 300000

L2
 c

ac
he

 m
is

se
s

n

basic row
basic mixed row
specialized row

specialized mixed row
pipelined

pipelined specialized

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

1e+08

0 50000 100000 150000 200000 250000 300000

L1
 d

at
a

ca
ch

e
m

is
se

s

n

basic row
basic mixed row
specialized row

specialized mixed row
pipelined

pipelined specialized

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

3e+09

3.5e+09

0 20000 40000 60000 80000 100000 120000 140000

L1
 in

st
ru

ct
io

n
ca

ch
e

m
is

se
s

n

basic row
basic mixed row
specialized row

specialized mixed row
pipelined

pipelined specialized

Fig. 6. Cache behavior and instructions executed on UltraSPARC III.

732 M. Korch, T. Rauber, and G. Rünger

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

1.4e+10

0 50000 100000 150000 200000 250000 300000

In
st

ru
ct

io
ns

n

basic row
basic mixed row
specialized row

specialized mixed row
pipelined

pipelined specialized

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

0 50000 100000 150000 200000 250000 300000

L2
 c

ac
he

 m
is

se
s

n

basic row
basic mixed row
specialized row

specialized mixed row
pipelined

pipelined specialized

0

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

0 50000 100000 150000 200000 250000 300000

L1
 d

at
a

ca
ch

e
m

is
se

s

n

basic row
basic mixed row
specialized row

specialized mixed row
pipelined

pipelined specialized

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50000 100000 150000 200000 250000 300000

L1
 in

st
ru

ct
io

n
ca

ch
e

m
is

se
s

n

basic row
basic mixed row
specialized row

specialized mixed row
pipelined

pipelined specialized

Fig. 7. Cache behavior and instructions executed on Pentium III.

On the Pentium III system the numbers of instructions executed for both
storage schemes do not differ significantly. But the numbers of misses in the
L2 cache and the L1 instruction cache are remarkably reduced for the mixed
row-oriented storage scheme. The differences between the L1 data cache misses
are smaller than those of the other caches. The basic implementation has even
fewer L1 data cache misses with the pure row-oriented storage scheme for most
system sizes.

Pipelining. The pipelining approach reduces the execution times on all ma-
chines we considered. Again the best results have been measured on the MIPS
processor. For system size n = 294 912, on this machine the basic pipelining im-
plementation, which is specialized in the mixed row-oriented ordering, outper-
formed the basic general implementation by 41.00%. The specialized pipelining
implementation ran 18.94% faster than the corresponding general implementa-
tion. On the other machines the basic pipelining implementation still was 23% to
29% faster than the basic general implementation, and the specialized pipelining
implementation was 10% to 12% faster than the specialized general implemen-
tation. As expected, the enhanced locality of the pipelining approach leads to
reduced L2 cache misses on the UltraSPARC III as well as the Pentium III
processor. On the UltraSPARC III system the number of L1 data cache misses
is also decreased. The number of L1 instruction cache misses does not change
significantly on the UltraSPARC III but is increased on the Pentium III ma-
chine. Similarly, the number of instructions executed has hardly changed on the
UltraSPARC III but is slightly smaller on the Pentium.

Pipelining for Locality Improvement in RK Methods 733

4 Conclusions

Runtime experiments have shown that for general RK implementations the
mixed row-oriented storage scheme outperforms the row-oriented scheme on most
of the processors considered. These results are due to higher locality caused by
the smaller distance of the components accessed in one evaluation of the right
hand side function f . Because of the increase in locality obtained by the pipelin-
ing computation scheme, we have measured reductions in execution time between
10% and 41%.

References

1. R. Berrendorf and B. Mohr. PCL - The Performance Counter Library, Version 2.0.
Research Centre Jülich, September 2000.

2. J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing matrix multiply
using PHiPAC: a portable, high-performance, ANSI C coding methodology. In 11th
ACM Int. Conf. on Supercomputing, 1997.

3. J. Choi, J. J. Dongarra, L. S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C.
Whaley. Design and implementation of the ScaLAPACK LU, QR and Cholesky
factorization routines. Scientific Programming, 5:173–184, 1996.

4. Wayne H. Enright, Desmond J. Higham, Brynjulf Owren, and Philip W. Sharp. A
survey of the explicit Runge-Kutta method. Technical Report 94-291, University of
Toronto, Department of Computer Science, 1995.

5. K. S. Gatlin and L. Carter. Architecture-cognizant divide and conquer algorithms.
In Proc. of Supercomputing’99 Conference, 1999.

6. E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I:
Nonstiff Problems. Springer–Verlag, Berlin, 1993.

7. Thomas Rauber and Gudula Rünger. Optimizing locality for ODE solvers. In
Proceedings of the 15th ACM International Conference on Supercomputing, pages
123–132. ACM Press, 2001.

8. C. Weiß, W. Karl, M. Kowarschik, and U. Rüde. Memory characteristics of iterative
methods. In Proceedings of the ACM/IEEE SC99 Conference, Portland, Oregon,
November 1999.

9. R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software.
Technical report, University of Tennessee, 1999.

	1 Introduction
	2 Data Access Structure and Pipelining
	3 Runtime Experiments
	4 Conclusions
	References

