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Abstract. Congestion leads to a severe performance degradation in multipro-
cessor interconnection networks. Therefore, the use of techniques that prevent
network saturation are of crucial importance to avoid high execution times.
In this paper, we propose a new mechanism that uses only local information to
avoid network saturation in wormhole networks. In order to detect congestion,
each network node computes the quotient between the real transmission time of
messages and its minimum theoretical value. If this ratio is greater than a threshold,
the physical channel used by the message is considered congested. Depending on
the number of congested channels, the available bandwidth to inject messages is
reduced.
The main contributions of the new mechanism are three: i) it can detect congestion
in a remote way, but without transmitting control information through the network;
ii) it tries to dynamically adjust the effective injection bandwidth available at each
node; and iii) it is starvation-free.
Evaluation results show that the proposed mechanism avoids network performance
degradation for different network loads and topologies. Indeed, the mechanism
does not introduce any penalty for low and medium network loads, where no
congestion control mechanism is required.

1 Introduction

Massively parallel computers provide the performance that most scientific and commer-
cial applications require. Their interconnection networks offer the low latencies and high
bandwidth that is needed for different kinds of traffic. Usually, wormhole switching with
virtual channels and adaptive routing is used [6]. However, multiprocessor interconnec-
tion networks may suffer from severe saturation problems with high traffic loads, which
may prevent reaching the wished performance.

This problem can be stated as follows. With low and medium network loads, the
accepted traffic rate is the same as the injection rate and latency slightly increases due
to contention. When traffic injection rate exceeds certain level (the network saturation
point), accepted traffic falls and message latency increases considerably. Notice that
both latency and accepted traffic are dependent variables on injected traffic. When this
situation is reached, we say that the interconnection network is congested. Performance
degradation due to congestion is specially important when messages stay in the network
in case of contention, which is the case of wormhole.
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Message throttling has been the most frequently used method to avoid network con-
gestion. Several mechanisms have been already proposed, they have important draw-
backs that will be analyzed in Section 2.

In this paper, we propose and evaluate a new mechanism to prevent network con-
gestion that tries to overcome those drawbacks. The mechanism is based on locally
estimating network traffic by using message transmission times and applying message
throttling when congestion is presumed. The rest of the paper is organized as follows.
In order to design an efficient mechanism, in Section 2 we describe what is expected
from a good congestion control mechanism, criticizing previous approaches. Section 3
describes the new proposal. Performance evaluation results are presented in Section 4.
Finally, some conclusions are drawn.

2 Features of a Good Congestion Control Mechanism

In order to design an efficient congestion control mechanism, in this section, we will
describe the desirable features of such a mechanism.

First, the mechanism should be robust. As saturation point depends on network load
and topology, a given mechanism may not always work properly. However, many of
the previously proposed mechanisms have been analyzed for only one network size [1],
[16] and for the uniform distribution of message destinations [4], [8], [7], [14] or do not
achieve good results for different traffic patterns [15].

Second, the mechanism should not penalize network behavior when the network is
not saturated, which is the most frequent situation [13]. However, some of the previous
proposals increase message latency before the saturation point [4], [15], [7].

Finally, the new mechanism should not complicate network design. Some of the
proposed mechanisms increase network complexity by adding new signals [14], [8] or
even a sideband network [16], [15]. Others need to send extra information through the
network [8].

3 Congestion Detection
Based on Measuring Packets Transmission Time

This section describes the new mechanism proposed in this paper.
First, let us analyze the effect of traffic rate on message latency. With low traffic rate,

messages flow smoothly through the network, only suffering the routing and switching
delays at each traversed node. Indeed, physical channels will be seldom multiplexed into
virtual channels.

As traffic increases, the probability that the message find busy channels also in-
creases, thereby, multiplexing physical channels and slowing down message advance
speed. Indeed, once one of the channels used by the message is multiplexed, the whole
message advances at a lower speed. In this situation, message latency may increase until
v times, v being the maximum number of virtual channels per physical channel.

If traffic continues to increase, the contention for the use of channels gets worse.
Therefore, all the possible virtual output channels for reaching a given destination may
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Fig. 1. Quotient between actual and minimum message transmission time versus accepted traffic.
8-ary 3-cube (512 nodes). TFAR routing with 3 virtual channels per physical channel and deadlock
recovery. 16-flit messages.

be busy. In this situation, the message header stops, preventing also the advance of the
remaining flits of the message. Channel buffers may allow data flits to continue flowing
for some time, until they become full. In this case, message latency may considerably
increase because of the combined effects of header contention and physical channel
multiplexing.

Therefore, with low network load, message latency will be close to the minimum
theoretical value, and it will increase as network load does. The mechanism proposed
in this paper uses this idea in order to detect network congestion. In particular, the
proposed method computes, for each virtual channel, the elapsed time between the
arrival of a message header to the node and the transmission of its tail flit. This is the
actual transmission time. The minimum value (what we call the theoretical transmission
time) is the product of message size and the time required to transfer one flit across
the link. Although the absolute value of actual transmission time depends on message
destination distribution and message length, the quotient between this value and its
minimum theoretical time does not strongly depend on network load, as Figure 1 shows.
Indeed, the obtained values when the network is near to the saturation point are quite
similar (around 2.0) for all the destination distributions considered. On the other hand, to
make the mechanism independent on message length, this ratio is computed periodically,
every time the time required to transfer a given number of flits (for instance 8 flits) has
elapsed.

This ratio may be used to detect network congestion. When it is greater than a given
threshold u1, the message using the virtual channel is having problems to advance, then
we mark the physical channel containing the virtual channel as congested during some
interval u2.

The information about physical channel status -congested or not- is used when new
messages have to be injected into the network. Only the status of useful channels1 will
be considered. In particular, if any of the useful channels to route the new message is
congested, message throttling will be applied. On the other hand, the proposed mecha-

1 A physical channel is useful to route a message if it is a minimal route between the current
node and the destination node
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Fig. 2. Operation of the congestion control mechanism based on message transmission time.

nism tries to consider the saturation level of the network, in order to apply congestion
control measures in a step-by-step fashion. In particular, different restrictions are ap-
plied depending on the number of congested useful channels, reducing accordingly the
number of injection channels2. If some of the useful physical channels are congested
(but not all of them), we reduce the number of injection channels by half (e.g. from 4 to
2 injection channels) during an interval time u3. If all the useful channels are congested,
the measures have to be more restrictive. In this case, newly generated messages cannot
be injected during u3 cycles. After that the performed actions depend on the level of
detected congestion. In the former case (soft congestion), the status of useful physical
channels is analyzed again, proceeding in the same way as we described. In the latter
case (serious congestion), we will enable one injection channel during an interval u4,
regardless of the network status, in order to prevent starvation. After u4, if there are
pending messages in the injection queue, we will analyze again the status of the useful
physical channels. Finally, if congestion is not longer detected, the number of injection
channels is progressively increased. Figure 2 shows the behavior of the mechanism.

The proposed mechanism has the advantage of being able to detect the congestion
in a remote way, but by using only local information. Moreover, all the nodes that are
along the path followed by the message that finds congestion will detect the problem.
The sender node of the message may do not detect the problem if the message tail has
already left the node when the header flit reach the congested area. However, if the
congestion situation is persistent, the next sent messages will every time increase their
transmission times in nearer areas. Hence, the sender node will also detect the problem.

4 Evaluation

In this section, we will evaluate by simulation the behavior of the proposed congestion
control mechanism. The evaluation methodology used is based on the one proposed in

2 This is equivalent to reduce the bandwidth associated to message injection at each node
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[5]. The most important performance measures are latency (time required to deliver a
message, including the time spent at the source queue) and throughput (maximum traffic
accepted by the network). Accepted traffic is the flit reception rate. Latency is measured
in clock cycles, and traffic in flits per node per cycle.

4.1 Network Model

Message injection rate is the same for all nodes. Each node generates messages inde-
pendently, according to an exponential distribution. Destinations are chosen according
to the Uniform, Butterfly, Complement, Bit-reversal, and Perfect-shuffle traffic patterns,
which illustrate different features. Uniform distribution is the most frequently used in
the analysis of interconnection networks. The other patterns take into account the per-
mutations that are usually performed in parallel numerical algorithms [9]. For message
length, 16-flit and 64-flit messages are considered.

The simulator models the network at the flit level. Each node has a router, a crossbar
switch and several physical channels. Routing time, transmission time across the crossbar
and across a channel are all assumed to be equal to one clock cycle. Each node has
four injection/ejection channels. Although most commercial multiprocessors have only
one injection/ejection channel, previous works [8], [6], [2] have highlighted that the
bandwidth available at the network interface may be the bottleneck to achieve a high
network throughput.

Concerning deadlock handling, we use software-based deadlock recovery [12] and a
True Fully Adaptive routing algorithm (TFAR) [13,12] with 3 and 4 virtual channels per
physical channel. This routing algorithm allows the use of any virtual channel of those
physical channels that forwards a message closer to its destination. In order to detect
network deadlocks, we use the mechanism proposed in [10] with a deadlock detection
threshold equal to 32 cycles.

We have evaluated the performance of the proposed congestion control mechanism
on a bidirectional k-ary n-cube. In particular, we have used the following network sizes:
256 nodes (n=2, k=16), 512 nodes (n=3, k=8), and 4096 nodes (n=3, k=16).

4.2 Performance Comparison

In this section, we will analyze the behavior of the mechanism proposed in section 3,
which will be referred to as Trans-t (Transmission time). For comparison purposes,
we will also evaluate the behavior of the mechanism proposed in [16], which will be
referred to as Self-Tuned. In this mechanism, nodes detect network congestion by using
global information about the total number of full buffers in the network. If this number
surpasses a threshold, all nodes apply message throttling. The use of global information
requires to broadcast data among all the network nodes. A way of transmitting this
control information is to use a sideband network with a far from negligible bandwidth
[16]. To make a fair comparison, as the mechanism proposed in this paper does not need
to exchange control messages, the bandwidth provided by the sideband network should
be considered as additional available bandwidth in the main interconnection network.
However, in the results that we present we do not consider this fact. If this additional
bandwidth were considered, the differences, not only in throughput but also in latency,
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between Self-Tuned and the new mechanism would be greater than the ones shown.
Moreover, results without any congestion control mechanism (No-Lim) are also shown.

First of all, the Trans-t mechanism has to be tuned. We have found that the most
critical threshold is u1 (the threshold used for comparing the quotient of transmission
times). As once congestion is detected the injection bandwidth is dynamical adjusted,
the other thresholds have a high tolerance variations. The other thresholds tolerate bigger
variations. In the case of u2 and u4, if they are very high, congestion control measures
may be applied more time than needed. Therefore, if the network is not longer congested,
message latency increases. On the other hand, if they are too low, the status of physical
channel is unnecessarily checked many times. Concerning u3, if it is too low, it does not
apply enough injection limitation restrictions to reduce congestion and the mechanism
does not work. After several experiments, the thresholds u2, u3, and u4 have been
established in 8, 16 and 8 clock cycles, respectively.

With respect to threshold u1, we used a value equal to the number of virtual channels
per physical channel as the starting point. The explanation is simple. When congestion
appears for the first time, many physical channels will be completely multiplexed in
virtual channels. Therefore, the message transmission time across each virtual channel
will be roughly equal to the theoretical minimum value multiplied by the multiplex-
ing degree. However, we must consider also that physical channels may not be fully
multiplexed and the contention experimented by message header. Hence, the optimal
value for this threshold can slightly change. The results show that, for a given network
topology, the same value of threshold u1 is well suited for different message destinations
and message sizes. The design factors that impact threshold u1 are the topology radix
(k), and the number of virtual channels per physical channel. For a given k-ary n-cube,
the optimal threshold increases with the number of virtual channels. On the contrary,
when k increases, the optimal threshold decreases. The justification is simple. The higher
the number of virtual channels per physical channel, the lower the network congestion,
thereby injection policy can be more relaxed. On the contrary, increasing k (the number
of nodes per dimension) without increasing the number of dimensions, there is a higher
number of paths which shared links among them, which exacerbates congestion. Hence,
a more strict injection policy is required (a lower threshold should be used).

Figure 3 shows the average message latency versus traffic for different u1 threshold
values for the uniform and perfect-shuffle traffic patterns for a 8-ary 3-cube (512 nodes).
As it can be seen, the lowest threshold values lead to apply more injection limitation than
necessary. As a consequence, message latency is increased due to the fact that messages
are waiting at the source nodes. On the other hand, the highest threshold value allows
a more relaxed injection policy and trends saturating the network. In this case, a good
u1 threshold value is 4. Table 1 shows the optimal thresholds found for other topologies
and number of virtual channels.

Once tuned the new mechanism, we can compare it with other proposals. Figures 4
through 7 show some of the results obtained, for different message destination distribu-
tions, network and message sizes.

In all the cases, simulations finish after receiving 500,000 messages, but only the last
300,000 ones are considered to calculate average latencies. As we can see, the new mech-
anism (Trans-t) avoids the performance degradation in all the cases. Indeed, it always
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Fig. 3. Average message latency vs. accepted traffic for different u1 threshold values for the
Trans-t mechanism. 8-ary 3-cube (512 nodes). 16-flit messages. 3 virtual channels per physical
channel.
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Table 1. Optimal u1 threshold values for different topologies and number of virtual channels per
physical channel.

Nodes Nr. of vc u1 Nr. of vc u1
512 (8 × 8 × 8) 3 4 4 5
256 (16 × 16) 3 2.5 4 3.75
4096 (16 × 16 × 16) 3 2.25 4 3.5
1024 (32 × 32) 3 2 4 3.25

improves network performance by increasing the throughput achieved when no conges-
tion control mechanism is used. On the other hand, although the Self-Tuned mechanism
helps in alleviating network congestion, it strongly reduces network throughput and
increases network latency with low and medium loads.

We have also used a bursty load that alternates periods of high message injection
rate, with periods of low traffic. In this case, we inject a given number of messages
into the network and simulation goes on until all messages arrive to their destinations.
Figure 8 shows the results for a 2-ary 16-cube (256 nodes) with a uniform distribution
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Fig. 5. Average message latency vs. accepted traffic. 16-flit messages. 8-ary 3-cube (512 nodes).
3 virtual channels per physical channel. u1 = 4.

100

1000

10000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

L
at

en
cy

 s
in

ce
 g

en
er

at
io

n 
(c

yc
le

s)

Accepted Traffic (flits/node/cycle)

Bit-reversal

Trans-t
Self-tuned

No-lim

100

1000

10000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

L
at

en
cy

 s
in

ce
 g

en
er

at
io

n 
(c

yc
le

s)

Accepted Traffic (flits/node/cycle)

Perfect-shuffle

Trans-t
Selftuned

No-lim

Fig. 6. Average message latency vs. accepted traffic. 16-flit messages. 8-ary 3-cube (512 nodes).
3 virtual channels per physical channel. u1 = 4.

100

1000

10000

0.05 0.1 0.15 0.2 0.25 0.3 0.35

L
at

en
cy

 s
in

ce
 g

en
er

at
io

n 
(c

yc
le

s)

Accepted Traffic (flits/node/cycle)

Uniform

Trans-t
Self-tuned

No-lim

100

1000

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

L
at

en
cy

 s
in

ce
 g

en
er

at
io

n 
(c

yc
le

s)

Accepted Traffic (flits/node/cycle)

Perfect-shuffle

Trans-t
Self-tuned

No-lim

Fig. 7.Average message latency vs. accepted traffic. 16-flit messages. 16-ary 3-cube (4096 nodes).
3 virtual channels per physical channel. u1 = 2.25.

of message destinations, 3 virtual channels per physical channel, 400,000 messages
generated at a rate of 0.34 flits/node/cycle (high load period) and 200,000 messages at
0.23 flits/node/cycle. These loads are applied alternatively twice. As we can see, with the
Trans-t mechanism the network accepts the injected bursty traffic without problems.
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On the contrary, when no congestion control mechanism is applied, as soon as the
first burst is applied into the network, congestion appears. As a consequence, latency
strongly increases and accepted traffic falls down. Lately, after some time injecting
at the low rate, network traffic starts recovering but the arrival of a new traffic burst
prevents it. Congestion only disappears in the last period of time, when no new messages
are generated. Concerning the Self-Tuned mechanism, we can see that it excessively
limits the injection rate, significantly reducing the highest value of accepted traffic and
increasing the time required to deliver all the injected messages. This time is another
performance measure that is strongly affected by the presence of network congestion.
As Figure 8 shows, Trans-t delivers the required number of messages in half the time
than No-Lim, while Self-Tuned achieves an intermediate value between both of them.

5 Conclusions

In this paper, we propose a new mechanism (Trans-t) based on message throttling
to avoid network congestion. This mechanism estimates network traffic by using only
local information. In particular, the relationship between the actual and the minimum
theoretical transmission time of messages sent across channels is used. The transmission
time of a message is the elapsed time between the transfer of its header and tails. If this
quotient exceeds a threshold for a given channel, the mechanism assumes that there
is congestion in that direction. Although the threshold has to be empirically tuned, it
does neither strongly depend on message destination distribution nor on message size,
although it depends on the topology radix k (number of nodes per dimension) and the
number of virtual channels per physical channel. This is not a problem, as these design
parameters are fixed once the machine is built. The information about channels status
-congested or not- is considered every time a node tries to inject a new message into
the network, adjusting the injection bandwidth depending on the number of congested
physical channels that are useful to route the message.

The mechanism has been evaluated for different network loads and topologies. The
evaluation results show that the mechanism is able to avoid performance degradation in
all the analyzed conditions, outperforming recent proposals, increasing network through-
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put and reducing message latency. On the other hand, it does not introduce any penalty
for low and medium network loads, when none congestion control mechanism is re-
quired. Finally, as it is based only on local information, it does neither require extra
signaling nor control message transmission.
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