
Integrating Temporal Assertions
into a Parallel Debugger�

Jozsef Kovacs1, Gabor Kusper2, Robert Lovas1, and Wolfgang Schreiner2

1 Computer and Automation Research Institute (MTA SZTAKI)
Hungarian Academy of Sciences, Budapest, Hungary

{smith,rlovas}@sztaki.hu
http://www.lpds.sztaki.hu

2 Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University, Linz, Austria

{Gabor.Kusper,Wolfgang.Schreiner}@risc.uni-linz.ac.at
http://www.risc.uni-linz.ac.at

Abstract. We describe the use of temporal logic formulas as runtime
assertions in a parallel debugging environment. The user asserts in a
message passing program the expected system behavior by one or sev-
eral such formulas. The debugger allows by “macro-stepping” to inter-
actively elaborate the execution tree (i.e., the set of possible execution
paths) which arises from the use of non-deterministic communication op-
erations. In each macro-step, a temporal logic checker verifies that the
once asserted temporal formulas are not violated by the current pro-
gram state. Our approach thus introduces powerful runtime assertions
into parallel and distributed debugging by incorporating ideas from the
model checking of temporal formulas.

1 Introduction

We report on a system which applies ideas from the model checking of temporal
formulas to the area of parallel debugging; its goal is to support the development
of correct and reliable parallel programs by runtime assertions that are derived
from temporal formulas which describe the expected program behavior.

The behavior of sequential programs can be described with classical logic
by a predicate (the output condition) that must hold after the execution of the
program. Furthermore, the output condition can be translated (by the technique
of weakest preconditions) into conditions that must hold at every step of the
program. Such a condition can thus be considered as an assertion that must
hold at a particular program step; if we restrict our attention to a particular
subclass of formulas, such an assertion can be checked at runtime. Annotating a
program by runtime assertions is a simple but very effective way of increasing the
code’s reliability and thus the user’s confidence in a program’s correct behavior.
� Supported by the ÖAD-WTZ Project A-32/2000 “Integrating Temporal Specifica-
tions as Runtime Assertions into Parallel Debugging Tools”.

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 113–120.
c© Springer-Verlag Berlin Heidelberg 2002

114 J. Kovacs et al.

Assertions play an important role in the development of sequential programs,
but their role in parallel programming is currently far less dominant. One reason
is that (due to non-determinism) a program may exhibit for the same input
different executions; furthermore, interesting properties talk about the state of
the complete system (and not about the state of a single process). Another reason
is that the scopes of properties are usually not defined by specific code locations
but by temporal relations to other properties. These problems are difficult to
overcome in production runs of parallel programs and with classical logic. We
therefore turn our attention to program runs controlled by parallel debuggers
and to assertions expressed in the language of temporal logic.

Since debugging parallel programs is an important and difficult task, many
projects have been developing tools to support the user in this area; for a survey,
see [8]. A particular challenge is the mastering of non-determinism which arises
in message passing programs from the wildcard receive operation, i.e., a receive
operation that non-deterministically accepts messages from different communi-
cation partners. The NOPE (Non-deterministic Program Evaluator) deals with
this problem by generating in a record phase partial traces which contain or-
dering information of critical events [9,8]. During replay these data are used to
enforce the same event ordering as occurred in the recording phase. The DI-
WIDE debugger [7,6] applies the technique of macro-stepping which allows to
test all branches of an application in a concurrent manner; we will describe this
technique in more detail in the remainder of this paper.

Temporal logic has proved as an adequate framework for describing the dy-
namic behavior of a system (program) consisting of multiple asynchronously
executing components (processes) [10]. A temporal logic formula can be consid-
ered as the specification of a parallel program; in linear time temporal logic, a
program is correct if every possible execution satisfies the formula. If a program
itself is described in a formal framework, the technique of model checking can be
applied to decide about the correctness of the temporal specification, provided
that the program only exhibits a finite number of states [1]. There exist tools
for the validation of concurrent system designs based on temporal logic [3] and
for the generation of test cases from temporal specifications [4]. In the system
presented in this paper, we use actual program runs controlled by a debugger as
the universe in which a temporal formula is checked. Thus our work combines
ideas from parallel debugging and from model checking.

The approach closest to our ideas is that of pattern-oriented parallel debug-
ging pioneered by the program analysis tool Belvedere [5]. This approach was in-
cluded and extended by the post-mortem event-based debugger Ariadne [2], and
later applied in the TAU program analysis environment [11]. Ariadne matches
user-specified models of intended program behavior against actual program be-
havior captured in event traces. Ariadne’s modeling language for describing pro-
gram behavior is based on communication patterns with a notation derived from
regular expressions. This language is quite simple; the language of temporal logic
used in our system is considerably more expressive and allows to describe the
intended program behavior in much more detail.

Integrating Temporal Assertions into a Parallel Debugger 115

2 Macrostep Debugging in DIWIDE

DIWIDE is a distributed debugger which is part of the visual parallel program-
ming environment P-GRADE. This debugger implements the macrostep method
which gives the user the ability to execute the application from communication
point to communication point [7,6].

A macrostep is the set of executed code regions between two consecutive col-
lective breakpoints. A collective breakpoint is a set of local breakpoints, one for
each process, that are all placed directly after communication instructions such
that a macrostep contains communication instructions only as the last instruc-
tions of its regions. In the macro-step execution mode, DIWIDE generates from
the current collective breakpoint the next collective breakpoint and then runs
the program until the new collective breakpoint is hit. At replay, the progress of
the processes is controlled by the stored collective breakpoints; the program is
executed again macrostep by macrostep as in the execution phase.

Fig. 1. The Macrostep Debugger Control Panel

When a communication operation in a collective breakpoint is a wildcard
receive operation, this breakpoint splits macro-step execution into multiple ex-
ecution paths. Each path represents one possible selection of a sender/receiver
pair for all wildcard receive operations in the originating collective breakpoint.

The set of all possible execution paths can be represents by a tree whose
nodes represent collective breakpoints and whose arcs represent macrosteps. The
macrostep control panel of the DIWIDE debugger visualizes this tree as far

116 J. Kovacs et al.

as it has been already constructed and allows the user to control its further
elaboration (see Figure 1). The user may select particular branches in the tree or
let the system automatically traverse the tree according to some strategy. He may
also set a meta-breakpoint in some node and let the system replay execution along
the corresponding branch until the selected node is hit. The system therefore
gives the user very powerful means to control the non-deterministic behavior of
a parallel program in the debugging process.

3 Macrostep Debugging with Temporal Assertions

Before we go into technical details, we will illustrate the use of temporal formu-
las as runtime assertions by a simple example. Take a parallel program which
consists of three processes: a producer process which generates a finite number
of values and sends them to a buffer process which receives values from the pro-
ducer and eventually forwards them to a consumer process which receives the
values from the buffer and processes them. The buffer has a finite capacity; de-
pending on its fill state (full, empty, not full and not empty) it waits for requests
from one or from both of the other processes (to receive or to send a value) and
answers them. Its behavior is therefore in general non-deterministic and may be
investigated by the macro-step debugger as sketched in the previous section.

A fundamental property which we expect from the system is that the number
of messages stored in the buffer always equals the difference of the number
of messages sent by the producer and of the number of messages received by
the consumer (we assume a synchronous message passing handshake). Another
property is the fact that if the buffer is non-empty, it will eventually get empty.
In the notation of temporal logic [10], these properties can be written as

✷NoLostMessage ∧ ✷(¬BufferEmpty ⇒ ✸BufferEmpty)

where “NoLostMessage” expresses the core of the first property and “Buffer-
Empty” the core of the second property. The temporal operator ✷ reads as
“always” and the temporal operator ✸ as “eventually”. This property can be
asserted at the beginning of our program by a C statement

assert("BufferSpec");

where BufferSpec is the name of a Java class whose method getFormula returns
an object that encodes above formula:

class BufferSpec extends Specification {
public Formula getFormula() {
return new Conjunction(
new Always(new Atomic("NoLostMessage", null)),
new Always(new Implication(
new Negation(new Atomic("BufferEmpty", null)),
new Eventually(new Atomic("BufferEmpty", null)))));

}
}

Integrating Temporal Assertions into a Parallel Debugger 117

When the debugger encounters the assert statement, it instructs the tem-
poral logic checker (TLC) which is implemented in Java to dynamically load this
class. TLC is called by the debugger after every subsequent macro-step to verify
whether the state of the current collective breakpoint violates the asserted for-
mula or not. The user can follow the checking process in a window that displays
the status of the formula in every collective breakpoint: “false” means that the
stated assertion has been violated by the current execution, “true” means that
the assertion cannot be violated any more, “unknown” means that the assertion
may be still violated in the future.

The formula BufferSpec refers to two atomic predicates NoLostMessage
and BufferEmpty which are the names of C-functions which are located in a
separate library that is dynamically loaded by the debugger. Whenever the TLC
asks the debugger for the value of an atomic formula, the debugger executes
the corresponding function which returns the truth value of the predicate in the
current system state:

int NoLostMessage() {
long number, countP, countC;
number = getVarLongInt("number", getProcessIndex("Buffer"));
countP = getVarLongInt("count", getProcessIndex("Producer"));
countC = getVarLongInt("count", getProcessIndex("Consumer"));
return number == countP-countC;

}

int BufferEmpty() {
long number = getVarLongInt("number", getProcessIndex("Buffer"));
return number == 0;

}

The atomic predicate functions can inspect the system state via an interface
to the debugger. For instance, the function getVarLongInt(var, proc) returns
the value of the program variable var in process proc as a value of type long. In
this way, the predicate function NoLostMessage checks the number of messages
in the buffer process with respect of the values of two counter variables in the
producer process and in the consumer process.

Summarizing, for using in our system temporal formulas as runtime asser-
tions, the programmer needs to

1. annotate the program to be debugged by the assertions1,
2. provide a Java encoding of the temporal formulas,
3. provide C functions for the atomic predicates used in the temporal formulas.

This only reflects the current state of the system; in later versions, we plan
to develop a meta-language where the Java encoding and the C functions are
automatically generated from a high-level specification language.
1 If the atomic predicates in an assertion refer to program labels, the program must
be also annotated by such labels.

118 J. Kovacs et al.

4 Temporal Assertions

We are now going to sketch the formal basis of using temporal formulas as
runtime assertions. Any system can be described by a tuple 〈is,ns〉 where is is
the set of initial states of the system and ns is the next state relation of the
system. A temporal formula F is valid for such a system, written as T[[F]]isns,
if for every (finite or infinite) state sequence s induced by 〈is,ns〉, F holds at
position 0 of s. Thus it suffices to define the truth value of a temporal formula
F at position i of s, written as T[[F]]s i:

T[[✷F]]s i = true iff T[[F]]s j = true for all j with i ≤ j < |s|
T[[✸F]]s i = true iff T[[F]]s j = true for some j with i ≤ j < |s|

Now let us introduce a “next step” formula ◦vF

T[[◦vF]]s i = if i + 1 = |s| then v else T[[F]]s (i + 1)

which is true, if F holds in the next step, and if no such step exists, takes the
truth value v. We then define a semantics-preserving formula translation G[[F]]

G[[✷F]] = G[[F]] ∧ ◦true✷F
G[[✸F]] = G[[F]] ∨ ◦false✷F

such that in the result G := G[[F]] the operators ✷ and ✸ are always guarded
by the ◦v operator. We can therefore reduce the validity of a temporal formula
F in a state sequence s at position i to the validity of atomic formulas in state
s(i) and to the validity of temporal formulas in s at i + 1.

Above definition is based on state sequences, but in assertion checking we
only have access to the “current” state of the system. We therefore introduce a
set of state trees T (is,ns) induced by 〈is,ns〉. Each node in such a tree t holds a
state tstate, has a link tprev to its predecessor node, and a set of successor nodes
tnext. The roots r of these trees (the nodes with rstate ∈ is) have rprev = �; the
leaves l of these trees (for which no state s exists such that ns(lstate, s)) have
lnext = {�}. We can now define the semantics T[[G]]t of a guarded formula G
with respect to such a tree t such that the relationship to the original semantics
is preserved, i.e., T[[F]]is ns = T[[G]]T (is,ns).

However, during assertion checking, we only have access to a part of the tree
referenced by a “current” state node whose children (the nodes of the successor
states) may not yet be completely (or not at all) evaluated. We represent such
“partial trees” by trees that contain “unknown subtrees” denoted by ⊥ and
extend the semantics T on complete trees to a semantics T3 on partial trees
using a 3-valued logic with an additional logical value ⊥ (“unknown”).

The new semantics is compatible with the original one and monotonic with
respect to a partial ordering � of trees according to their information content:
s � t ⇒ T3[[G]]s � T3[[G]]t. We therefore have defined the semantics of a
guarded temporal formula G on the set of partial state trees induced by a system.
While above explanation only describes temporal operators ✷ and ✸ which refer
to the “future” of a state, our framework also supports corresponding operators
which talk about the “past”. The temporal logic checker TLC described in the
following section implements T3 to determine the validity of an assertion G .

Integrating Temporal Assertions into a Parallel Debugger 119

DIWIDE
Debugger

TLC
Engine

Predicates Assertions
Java ClassesDynamic Library

load assertionload predicate

predicate

evaluate

Debugged
Program

get variable

Fig. 2. Integrating TLC with DIWIDE

5 Checking Temporal Assertions with TLC in DIWIDE

The temporal logic checker TLC interacts with the DIWIDE debugger by a
specified protocol. This protocol operates in a sequence of rounds that correspond
to the states of an execution sequence. In each round,

1. TLC may receive from DIWIDE a new (additional) temporal formula whose
validity is to be checked in the subsequent state,

2. TLC may ask DIWIDE questions about the truth values of atomic formulas
in the current state (see Figure 2),

3. TLC announces its knowledge about the truth of the set of temporal formulas
it has received up to now (true, false, unknown).

When a round has ended, DIWIDE informs TLC about the beginning of a new
round (when a new state in the current execution sequence is available).

TLC evaluates in each round the truth of all formulas with respect to the
round in which the corresponding formula has been submitted by the external
partner. If a formula refers to the future, the result will be frequently “unknown”.
However, if more and more rounds are performed, the added knowledge may
let the knowledge about such a formula change to “true” (the formula cannot
be falsified any more after the current round) respectively “false” (the formula
has been falsified by the current round). If a formula has been falsified, the
corresponding assertion has been violated.

TLC does not repeatedly evaluate (sub)formulas whose final value (“true” or
“false”) is already known. Such results are cached such that only those formulas
are re-evaluated whose values are not yet known but are required to determine
the value of the overall formula. To support temporal “past operators”, TLC
prefetches in each round the values of all atomic predicates whose results may
be required in the future to evaluate a “past formula”. Whenever such a formula

120 J. Kovacs et al.

is submitted, TLC records the atomic predicates in the scope of such operators
in order to start prefetching the corresponding values.

6 Future Work

With TLC and DIWIDE it is possible to assert temporal formulas and have
their validity checked in (manually or automatically) selected runs of a parallel
program. However, we do not yet provide an adequate graphical user interface
which allows the programmer in an intuitive way to determine the fundamental
reason why an assertion has failed respectively is not yet satisfied. Second, we are
still lacking a high-level specification language from which the low level encodings
of temporal formulas (as Java objects) and atomic predicates (as C functions)
are automatically generated. Third, and most important, we need to evaluate
by larger program examples with interesting properties to which extent the use
of temporal assertions actually helps to improve the understanding of program
behaviors and detect errors in them. In any case, the presented system will serve
as a good starting point for these investigations on the usefulness of extending
a parallel debugger with model checking capabilities.

References

1. E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
Cambridge, MA, 1999.

2. J. Cuny et al. The Ariadne Debugger: Scalable Application of Event-Based Ab-
straction. SIGPLAN Notices, 28(12):85–95, December 1993.

3. D. Drusinsky. The Temporal Rover and the ATG Rover. In SPIN Model Check-
ing and Software Verification, 7th International SPIN Workshop, volume 1885 of
LNCS, pages 323–330, Stanford, CA, August 30 - September 1, 2000. Springer.

4. J. Hakansson. Automated Generation of Test Scripts from Temporal Logic Speci-
fications. Master’s thesis, Uppsala University, Sweden, 2000.

5. A. Hough and J. Cuny. Initial Experiences with a Pattern-Oriented Parallel De-
bugger. SIGPLAN Notices, 24(1):195–205, January 1988.

6. P. Kacsuk. Systematic Macrostep-by Macrostep Debugging of Message Passing
Parallel Programs. Future Generation Computer Systems, 16(6):609–624, 2000.

7. P. Kacsuk, R. Lovas, and J. Kovács. Systematic Debugging of Parallel Programs
in DIWIDE Based on Collective Breakpoints and Macrosteps. In P. Amestoy
et al., editors, 5th Euro-Par Conference, volume 1685 of Lecture Notes in Computer
Science, pages 90–97, Toulouse, France, August 31 – September 3, 1999. Springer.

8. D. Kranzlmüller. Event Graph Analysis for Debugging Massively Parallel Pro-
grams. PhD thesis, Johannes Kepler University, September 2000.

9. D. Kranzlmüller and J. Volkert. NOPE: A Nondeterministic Program Evaluator. In
Parallel Computation, 4th International ACPC Conference, volume 1557 of LNCS,
pages 490–499, Salzburg, Austria, February 16–18, 1999. Springer.

10. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems
— Specification. Springer, Berlin, 1992.

11. S. Shende et al. Event- and State-based Debugging in TAU: A Prototype. In
ACM SIGMETRICS Symposium on Parallel and Distributed Tools, pages 21–30,
Philadelphia, PA, May 1996.

	1 Introduction
	2 Macrostep Debugging in DIWIDE
	3 Macrostep Debugging with Temporal Assertions
	4 Temporal Assertions
	5 Checking Temporal Assertions with TLC in DIWIDE
	6 Future Work
	References

