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Abstract. In this paper we study the use of idle cycles in a network of desktop
workstations under unfavourable conditions: we aim to use idle cycles to improve
the responsiveness of interactive applications through parallelism. Unlike much
prior work in the area, our focus is on response time, not throughput, and short
jobs - of the order of a few seconds. We therefore assume a high level of primary
activity by the desktop workstations’ users, and aim to keep interference with their
work within reasonable limits.We present a fault-tolerant, low-administration ser-
vice for identifying idle machines, which can usually assign a group of processors
to a task in less than 200ms. Unusually, the system has no job queue: each job is
started immediately with the resources which are predicted to be available. Using
trace-driven simulation we study allocation policy for a stream of parallel jobs.
Results show that even under heavy load it is possible to accommodate multiple
concurrent guest jobs and obtain good speedup with very small disruption of host
applications.
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1 Introduction

This paper concerns the feasibility of on-the-fly recruitment of idleworkstations to enable
parallel execution of short computationally-intensive phases of an interactive application,
as commonly arise in a computer-aided design environment. In such applications, when
the user is constructing the design, little processing power is required, however when
the user selects ‘Generate Photo-realistic Image’, the computation required increases
dramatically. Ideally, the user would not want to wait long for the image to be produced,
possibly grabbing spare processing time from unused workstations. Our objective is to
exploit the fact that (as we quantify below) even when a machine is actually being used
interactively (the “host” job), there are often periods of inactivity lasting several seconds
or more. We focus on the challenging goal of using these brief periods of idleness to
execute short “guest” jobs in parallel in order to enhance response time. In addition to
presenting a simple and effective software tool, we explore the potential for achieving
this objective. We have chosen an extremely difficult environment - a heavily-used
student laboratory of 32 Linux PCs; see Figure 1. We show that a typical (albeit rather
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Fig. 1. This graph shows (on a log scale), the hourly-averaged percentage utilisation (see Sec-
tion 3.1) of our 32 Linux PCs over two typical days. Although not always 100% busy, themachines
are essentially in continuous use.

simple) parallel task can reliably achieve a speedup of 3 or more (reducing runtime to
ca.14 seconds), while interfering with only 6-7% of host user seconds. Furthermore, we
evaluate a simple allocation policy which handles intermittent arrival of such tasks.
Cycle Stealing on Networks of Desktop Workstations. The idea of making use of
this wasted processing power is attractive and exploiting idle workstations has been
a popular research area. Studies have shown that in typical networks of workstations
(NOWs), most machines are idle most of the time [2,1]. Batch systems like Condor [9]
have been in use for years to utilize idle workstations for running independent sequential
jobs. There have also been studies on the possibility of using idleworkstations for parallel
processing on coarse grain parallel jobs. Arpaci et al. [2] study the availability traces
of a 60-workstation pool using a job arrival trace for a 32 node CM-5 partition. They
find that the pool is able to sustain the 32-node parallel workload in addition to the
sequential load imposed by interactive tasks. Similarly, Acharya et al. [1] show that
for three non-dedicated pools of workstations it was possible to achieve a performance
equal to that of a dedicated parallel machine between one third and three quarters the
size of the pool. The results were achieved on relatively coarse grain adaptive parallel
applications which could dynamically reconfigure to cope with changes in the pool of
idle workstations available.
Instant-Access Cycle-Stealing for Interactive Response. In contrast to this earlier
work, we focus on interactive applications with intermittent bursts of computation load.
This requires optimizing the average response time for individual guest jobs and not the
global system throughput. Second, our computation bursts are quite short (10-20 seconds
if executed in parallel). This rules out the possibility of expensive process migrations
during computation and makes crucial the ability to foresee idle times accurately. It is
impractical to ship code and data to distant specialized nodes as happens in grid-oriented
metacomputing environments [4,7,12]. Finally, since the guest jobs arise from interactive
applications, we have to exploit idle workstations during busy day hours and we are not
interested in patterns of idleness during nights or weekends.

To our knowledge, this is the first attempt to investigate idle workstation harvesting
in this particular setting. There are two, linked challenges: (1) Can we achieve a useful
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speedup?Parallel programs (especially short-running ones) rely on all processorsmaking
progress. If just one of the participatingmachines is poorly-chosen, the entire parallel task
will be delayed. (2) Is the interference with the host machines’ other user(s) excessive?
Contributions. The main contributions of this paper are: (1) We present a low-overhead
distributed recruitment service, which automatically identifies the availableworkstations
on a local-area network. By autonomously electing a leader, the service requiresminimal
administration and handles failures gracefully. (2) We analyse traces of workstation
utilisation, in order to quantify the idle time available on a network of workstations, its
predictability, and the potential for using idle time for parallel processing. (3) Using a
simulation driven by these traces, we evaluate the guest job performance achievable, and
the amount of interference to host jobs. (4)We investigate scheduling policies to dealwith
aworkload consisting ofmultiple users generating occasional computationally-intensive
guest jobs.

The paper is organized as follows. Section 2 gives an overview of the architecture of
the system proposed, Section 3 reports on the experimental results obtained, Section 4
discusses some related work and Section 5 concludes.

2 System Overview

The system is organized as a network of daemon processes, one for each workstation.
Daemons monitor local load, provide job startup services and cooperate to predict future
load and to schedule incoming guest jobs. As the guest jobs are fairly short (10-20
seconds), we restrict our attention to clients and servers on a single LAN running under
the same administration/domain.
The mpidled Monitor Process. Allocation is orchestrated by a leader daemon which
acts as a central server. The leader is elected using the distributed protocol by Garcia-
Molina [8]. The protocol ensures automatic substitution of a leader in case of suspected
failure. When a client wants to spawn a new guest job it makes a recruitment request
to the leader which, after querying the daemon processes, returns a list of machines
predicted to be idle for the near future. Then, the client can contact the daemon on each
machine to inform it of the program to be executed. Each daemon process is responsible
for monitoring the system status and computing a load prediction (Section—3.1). The
leader, which may be any one of the daemons, is responsible for allocating resources
(Section—3.2).
The mpidle Application and API. A client can initiate a request for resources using a
command line utility (mpidle)which produces a list of idleworkstations, as a parameter
of anMPI job. Alternatively, a lower-overheadAPI is provided for direct invocation from
within client applications.

3 Experimental Evaluation

Overview. Section 3.1 quantifies the amount of idle time likely to be found in a typical
LANenvironment during the day. Section 3.2 discusses and evaluates our load prediction
strategy. Section 3.3 evaluates the time spent in finding a suitable workstation pool to
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execute new guest jobs (recruitment overhead). Section 3.4 presents the simulation
results under various scheduling strategies.

3.1 Idle Workstation Recruitment

We consider a workstation idle if it is not executing user processes and has a significant
amount of spare CPU time. More precisely we define a workstation as idle if, over a one
second period, less than 10% of CPU time is spent executing user processes, and at least
90% of CPU time could be devoted to a new process.
Experimental Environment. Tomeasure idleness patterns using our recruitment policy
we carried out observations of load traces collected over two weeks on a pool of 32 very
similar non-dedicated workstations (300MHz and 350MHz Pentium II, 128MB, Redhat
Linux 6.1) located at Imperial College London. This is a uniform pool of publicly
available machines used fairly intensively by undergraduate computer science students
for course assignments, software development projects, web browsing and email. Traces
were collected during the busy daytime hours, weekdays 9am to 6pm.
Pattern of Workstation Utilisation. Of all the one-second samples, 86% were idle.
Idle periods occur very frequently. Figure 2.left shows the distribution of time between
idle periods – 55% of intervals are 1s or less. Figure 2.right shows the distribution of
length of idle periods over all workstations. 50% of idle periods last for at least 3.3s. One
quarter of all idle periods last for longer than 10s: idle workstations often remain idle
long enough to perform another useful task. (Note the small inflection in the plot at 60s,
indicating that there are occasionally ‘periodic’ processes running on the workstations
that cut-short idle periods that would have otherwise exceeded 60s.). To evaluate scope
for parallel guest jobs, we studied the patterns of idleness across groups of workstations.
Figure 3.left shows the probability of having a group of workstations of a given size at
any given time. A group of 15 idle workstations is very nearly guaranteed to be available
at any time, and a group of 22 is available with a rather high probability. The stability
of such groups is shown in Figure 3.right. A group of 15 idle workstations is unlikely
to remain idle for very long - there is only a 15% chance of them lasting for more than
5 seconds. Smaller groups are normally more robust (Figure 4.left).
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3.2 Predicting Short Term Workstation Load

Each daemon process monitors its CPU load once every second. When an availability
request is received from the leader a load prediction is computed and returned. Load
is predicted using a windowed mean of recent load measurements to predict the load
over the next few seconds. Previous studies [5,14] have shown that accurate short-term
load prediction is possible and that good predictions can be made simply by taking
the mean of recent load measurements. However, the load metric considered in [5,14]
(UNIX ‘LoadAverage’ - the average length of the run-queue) is different from themetric
being considered here (CPUactivity) and sowe evaluated the accuracy of their prediction
schemewith our metric. The windowed-mean prediction schemewas applied to our load
traces, and the prediction errors were computed.We found that the error obtained using a
window of 5 measurements is usually very small - 35% of predictions correctly forecast
the average load over the following 10s. We also studied the relationship between the
windowsize and the length of the period forwhich the prediction is needed. Figure 4.right
shows the effects of window length on the mean absolute error for a particular desired
prediction length (in this case 10s). Figure 5.left showsoptimalwindowsizes for different
forecast length periods.
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3.3 Recruitment Overhead

Theworkstation recruitment overhead is the time spent in finding a suitable workstation
pool to execute a new guest job. In our experiment, the vast majority of recruitment
requests are answered within a very short time (≤ 0.15s), however a small number of
requests can be delayed to anything up to 2.5s. This happens when requests occur when
the leader is executing a periodic check to ensure that there is no other leader in the
cluster. During this time it cannot claim to be the leader and any request must wait until
the periodic check is finished [8].

3.4 Evaluating Scheduling Strategies

Trace-Driven Simulation. To ensure reproducibility of results and allow for closer in-
sight of the system behavior, we constructed a simulation using the load traces discussed
in Section 3.1, varying various parameters.We tested the systemwith a sample rendering
application which takes 42s on a single workstation. Figure 5 shows its speedup behav-
ior when executed on a dedicated cluster of the workstations. The simulation uses the
application’s speedup curve to predict the expected completion time of each task on the
resources available. It also accounts for the delay incurred (to all participating proces-
sors) when a guest process contends with a host process for CPU time. The contention
which occurs is determined from the load traces, which record the number of running
processes during each second so that a process’s CPU time share can be computed.
The Simulated Usage Regime. To exercise the resource allocation mechanism, we
simulate a fairly intensive situation in which clients request execution of rendering jobs
at random intervals. The rendering jobs are all of the same size (42s on one processor).
Requests arrive with an exponential distribution, with a mean inter-arrival time of 20s.
Scheduling Strategies. We experimented with three different scheduling strategies:
random,noreserve andx-reserve. The results are shown inTable 1. For each scheduling
strategy we measured the following:

– JobsRefused the proportion of submitted guest jobs forwhich therewere no available
participants;
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Table 1. System behavior results for different scheduling strategies.

Scheduling strategy rand no res 10-res 20-res 30-res 40-res 50-res 60-res

Jobs Refused nil 16.3% 3.3% 1.5% 2.0% 0.5% 0.2% 0.1

Idle Seconds Used 25.0% 21.6% 23.3% 23.2% 22.6% 22.1% 21.5% 21.0%

Mean Group Size 17.0 17.2 15.24 13.6 12.0 10.3 8.7 7.1

Mean Speedup 3.68 3.58 4.58 4.88 4.96 4.82 4.46 3.92

Seconds Disrupted 44.4% 5.28% 6.3% 6.5% 5.9% 6.0% 5.9% 6.2%

– Idle Seconds Used the proportion of idle seconds in the day that were put to good
use by the system;

– Mean Group Size the mean size of the group of workstations allocated to incoming
guest jobs;

– Mean Speedup the mean speedup for guest jobs including those for which no work-
stations were available (i.e. those that were forced to execute sequentially);

– Seconds Disrupted the proportion of busy seconds that were disrupted by the execu-
tion of guest jobs, i.e. how often did a misprediction lead to disruption of ordinary
workstation applications.

The Random Policy. We show the performance of a random allocation policy as a
control experiment. A constant number of workstations is recruited for every job and
this set is chosen at random among all the workstations regardless to their load. We used
a constant group size of 17, which is near to the mean under the no-reserve policy.
The “No-Reserve” Policy. The no-reserve policy allocates all the idle workstations
available to each recruitment request. Should a second request arrive shortly afterwards,
no idle workstations will be left.

– This led to a slightly worse speedup than random allocation (3.58).
– However, a large proportion (84%) of recruitment requests were satisfied.
– 20% idle seconds were exploited, out of the average 25% of seconds belonging to
periods of at least 10 seconds. This could be improved, especially since jobs were
refused.

– The proportion of seconds that were disrupted by inappropriate allocation of jobs
was low (5.3%), although not low enough for the system to be considered completely
non-intrusive.

The x-Reserve Policies. The x-reserve strategies try to save x% of the resources avail-
able at any given time for (near) future requests in order to have a better distribution of
the group sizes and to lower the percentages of guest jobs refused. With no-reserve, a
large proportion of jobs were executed on small numbers of workstations or were forced
to be executed serially because no workstation was available. Table 1 shows the results
obtained with x-reserve strategies keeping a different proportion x of reserve at each
allocation (the no-reserve strategy is the same as the 0-reserve strategy). The results are
as follows:

– By choosing the right reserve percentage we can achieve an average speedup of up
to 4.96.
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Fig. 6. The effect of x-reserve scheduling policies on distribution of group sizes.

– Furthermore, this increase in speedup is achieved without significantly increasing
the proportion of the seconds disrupted.

– The speedup falls when too many workstations are kept in reserve as the average
group size drops.

– Keeping reserves reduces the percentage of jobs refused, reducing the variance of
the speedup experienced by different guest jobs.

The effect of the reserve percentage on the distribution of group sizes is illustrated in
Figure 6. As expected, for small reserves, groups are either very large or very small,
while for larger reserves the group sizes are close to the mean.

4 Related Work

With Condor [9], the aim is to speed up independent sequential guest jobs using idle
workstations in a LAN. Usually, the jobs require a large amount of computation (hours
more than seconds) and a network of monitor daemons is used to collect information on
the current load ofmachines on the net. Disruption of host jobs isminimised bymigrating
the guest job as soon as the host jobs need a workstation. Linger-Longer [11] works in
the same scenario but allows a guest job to remain on a host machine when it ceases to
be idle. To avoid disruption it employs a set of Linux kernel extensions which use a new
guest process priority to prevent guest processes from stealing time from host processes
and a new page replacement policy which limits the slow down caused by guest pages
in the virtual page system. With this new scheme, the authors claim a much effective
usage of workstations, allowing gains up to 60% in the total compute time with respect
to Condor. Although the techniques used in these systems can be used in our setting,
the focus of our work is on interactive parallel guest jobs posing a quite different set of
challenges. As mentioned in the Introduction, the use of idle workstations to execute a
batch queue of parallel jobs has been studied by Acharya et al. and Arpaci et al. [1,2].
With the longer-running jobs they study, processes can be migrated from machine to
machine during execution. Furthermore, their objective was to minimize the execution
time of a whole batch, which can mean very long execution time for single jobs in order
to achieve better global resource arrangement.

Some of the problems addressed in our research, such as workstation load prediction
and load sensitive guest job scheduling have been addressed recently in the broader
framework of WAN scale metacomputing systems [7,4,12]. This setting is much more
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complex than ours and requires network load prediction to be addressed. Moreover, the
higher overhead due to non local job scheduling is more suitable for coarser grain guest
jobs than the ones addressed in this study.

Finally, scheduling parallel computations on batch parallel systems has attracted
considerable attention [3,6,13,10]. The usual metric to be optimized here is global batch
throughput. However, Subholk at al. [13] proposes strategies to minimize response time
for individual applications. They take both communication load and computation load
into account and select a pool of workstation and communication links to be used. Our
research addresses LAN environments in which only computational load is relevant for
node selection. The strategy proposed by Subholk et al. for our specific problem cor-
responds to our no-reserve policy. As we discussed in Section 3 this strategy penalizes
future jobs and leads to smaller average speedup figure with respect to x-reserve. Al-
though more experiments are needed, we believe that, in our setting, a strategy aiming
to optimize the average speedup experienced by competing guest jobs leads to better
resource usage and more reliable behavior than optimizing the response time of a guest
job in isolation.

5 Conclusions and Directions for Further Research

Wehave provided evidence that interactive performance of applicationswith intermittent
computational demands can be substantially enhanced through opportunistic parallel ex-
ecution on other instantaneously-idle workstations on the same LAN. Some interference
with host tasks is incurred, but the effect is small. When guest job requests arrive fre-
quently, much better performance is achieved by holding back some of the available
resource on each allocation.

While there is enormous scope for further work, this paper has demonstrated “mpi-
dled” to be a simple yet surprisingly effective tool. The software is in regular use at
Imperial College and a public release is planned.

Further research is needed: (1) Howwould our results change with different levels of
host load?We have taken a fairly extreme situation of essentially continuous utilisation -
many realistic environments would give better results. Our simple policy of holding back
some resources for future requests appears fairly stable, but wewould like to characterise
how the policy should be adjusted as task arrival rate and host load are varied. Some kind
of adaptive scheme looks attractive. (2) Our definition of “idle” is somewhat arbitrary
(Section 3.1). We need to evaluate how lowering the idleness threshold would reduce
interference, and reduce speedup. In our environment, external users (and Windows
users) often connect to our Linux systems remotely, so some level of interference to
desktop responsiveness is already tolerated. Other organisations have a different culture.
(3) We used a rather simple parallel application to exercise the system. Although our
rendering application has less-than ideal speedup, it is relatively loosely-synchronised.
We have been using mpidled to run a tightly-synchronised CFD solver and have positive
practical experience but have not yet been able to quantify the resulting performance. (4)
Realistic applications often (like the CFD solver) have large input and output files. This
is easily addressed by using the local filesystem on the machines allocated by mpidled -
but the next interactive use of the application (which uses the results from the previous
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run) is likely to be allocated a differing set of machines. We plan to explore strategies
for achieving parallel file access while retaining the necessary scheduling flexibility.
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