
Access Time Estimation
for Tertiary Storage Systems

Darin Nikolow1, Renata S�lota1, Mariusz Dziewierz1, and Jacek Kitowski1,2

1 Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059, Cracow, Poland
2 Academic Computer Centre CYFRONET AGH, Cracow, Poland,

{darin, rena, kito}@uci.agh.edu.pl
phone: (+48 12) 6173964, fax: (+48 12) 6338054

Abstract. We propose two approaches for estimating the Tertiary Stor-
age System access time: open approach and gray-box approach. In the
first case the source code of the storage system is available, so changes
in the code are made by adding event reporting functions. In the second
approach - the essential system information is accessible via its native
tools only. In this paper we describe an implementation of the open ap-
proach for access time estimation. The second approach we have shortly
described as our future work.

1 Introduction

As the requirements for storage capacity grow exponentially each year many
applications of different types (e.g. archiving, backup, scientific, DBMS, and
multimedia) make use of Tertiary Storage Systems (TSS). The access time of a
file stored on the TSS can vary a lot: from few seconds to hours. This depends
mainly on the system load at the time of issuing a request, but other parameters
like location of data on the storage medium, transfer rates and seek times of the
drives are also important. In some cases a priori knowledge of the access time is
essential, e.g., in the case of a Grid data replication system [1,2]. This will allow
more efficient usage of storage resources and will decrease the overall latency
times. In addition, the user’s satisfaction increases when the service time of his
or her request is predicted (e.g. user waiting to watch a selected video sequence
requested from a near-on-demand video server; administrator recovering from
backup).

Estimating the access time of a request for a given TSS state by using a single
analytical function is not applicable here because of the algorithmic nature of
the request processing. The Queuing Systems Theory could be used to compute
analytically the average access time of requests for a certain TSS state. The goal
of this study is to develop a method for accurate estimating the latency time of
a given request to the TSS. Since the analytically computed mean values are not
sufficient in many cases, the event simulation approach to estimate the latency
for a real system is adopted.

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 873–880.
c© Springer-Verlag Berlin Heidelberg 2002

874 D. Nikolow et al.

We propose two approaches for estimating the TSS access time:

– Open TSS Approach, in which the source code of the TSS is available, so
event reporting functions can be introduced, and

– Gray-Box TSS Approach, in which the essential system information is
accessible via its native tools only.

In this paper we describe an implementation of the open TSS approach for
access time estimation of own developed FiFra (File Fragmentation) TSS. The
second approach is shortly presented as our future work.

The rest of the paper is organized as follows. The next section presents some
related works. The third section describes briefly FiFra TSS. The fourth one
represents design and implementation details as well as experimental results for
the open TSS approach. Future work is presented in the following section and
the last one concludes the paper.

2 Related Work

Rodney Van Meter in [3] proposes Storage Latency Estimation Descriptors
(SLEDs) as a method of supplying to the client a predictive information about
the I/O performance of the underlying storage systems. By using SLEDs the
application can be more efficient by rescheduling its I/O calls in such a way that
the less expensive (for instance cached) I/O calls are invoked first. Rodney Van
Meter and Minxi Gao in [4] implement SLEDs for the Linux operating system
and show significant performance improvement of the applications modified to
take advantages of SLEDs. In their implementation the I/O performance esti-
mation is based on latency and bandwidth measurements done during the boot
process for each storage device attached to the system.

Shen et. al in [5,6] present a multi-storage architecture and a performance
prediction method to increase I/O efficiency of scientific applications. They also
developed a run time library on top of Storage Resource Broker (SRB) [7] for
optimizing tertiary storage access. Their prediction algorithm is based on time
measurements of basic SRB file operations (open, seek, read, close, etc.) and
assumes that the file is in the disk cache. Therefore, they do not concentrate on
prediction of the staging time for data located on tertiary storage.

3 Description of the FiFra TSS

3.1 Background

Since files stored on TSS get bigger the problem of efficient access to fragments
of them arises. This is essential for systems which require that the latency is
kept below a certain limit, like continuous media stream servers for instance.
The problem of efficient access to fragments of files stored on TSS is one of the
subjects covered in the task which we will carry out within the CrossGrid project
[2].

Access Time Estimation for Tertiary Storage Systems 875

A TSS capable to access video sequences called Video Tertiary Storage Sys-
tem (VTSS) [8] was developed during our previous work. Next, based on VTSS,
a more general version of the system (allowing access to plain file fragments)
was developed. We called it FiFra (File Fragmentation) TSS.

The access to the data stored in the FiFra TSS is sequential. Examples of
applications with sequential data access are: restoring data from backup copy,
CD-image archiving, anonymous ftp server, serving software depots, applications
using multimedia data (video, audio, image), logging systems, etc. Some of these
applications will probably need to access fragments of the files, e.g., playing
interesting parts of a video file, extracting log records for a certain period of
time or continue an interrupted file transfer.

3.2 Architecture of the FiFra TSS

The architecture of FiFra TSS is shown in Fig. 1. The system consists of two
main daemons: the Repository Daemon (REPD) and the Tertiary File Manager
Daemon (TFMD). Since the FiFra TSS is based on the VTSS described in [8]
only brief descriptions of REPD and TFMD are given.

tapedb filedb

Data flow

Control flow

TFMD

Automated Media Library

FiFra TSS

Client
REPD

Changer

Application

Drives
TapeMedium

Fig. 1. Architecture of the FiFra TSS.

REPD keeps repository information in its internal data structures. When
a mount request is received REPD issues appropriate SCSI commands to the
robot arm of the library. TFMD manages information about files and media and
transfers the files from the removable media devices to the client. In the case of
tapes the files should be stored with the hardware tape drive compression turned
off if we want to enable a direct file fragment retrieval from tape.

Since client requests (like write a new file or read a file fragment) can compete
for access to the storage resources they are served according to the FIFO strategy.
The most often used request is expected to be the read fragment request.

876 D. Nikolow et al.

TSS TSS Simulator

Client

req. id [2]

events

ETA [4]

ETA of req. id? [3]

data

req. [1]

Fig. 2. Open TSS approach.

4 Open TSS Approach for Access Time Estimation

4.1 General Design

The open TSS approach shown in Fig.2 is based on simulation of the TSS in order
to obtain the ETA (Estimated Time of Arrival) for a given request processed
by the TSS. ETA in this study is defined as the startup latency imposed by the
tertiary storage hardware and its managing software. In other words it represents
the local startup latency (the network influence is not taken into account). The
real TSS has to be changed to report essential events to the TSS simulator. The
calling sequence is mentioned by square brackets.

In this approach the Client issues its request to the TSS and receives an
identifier for that request. While waiting for the data to come the Client can
ask the TSS Simulator for the ETA of its request. Another possibility (just for
prediction) is to ask for the ETA before actually issuing a request (not presented
in the figure).

In this approach we mainly concentrate on TSS equipped with DLT drives,
due to their complex access time model. The processing of a request by the TSS
goes through subsequent states, triggered by the events shown in Fig.3. The most
probable path is mentioned thicker. The request processing goes to Waiting state

Waiting

LoadingIn use Positioning

moving to drive

slot

drive

Request
done

Request
arrival

idle
Moving to

Moving to

Unmounting

Waiting before

Waiting before

moving to slot

Fig. 3. State transition diagram of a request processed by the TSS.

Access Time Estimation for Tertiary Storage Systems 877

if there are no resources (drive or tape) available to proceed further. The state
Unmounting idle means preparing an idle tape for ejecting. The state Moving
to slot indicates that the idle tape is being moved to an empty slot. If the robot
arm is busy serving another request when Unmounting idle is finished then the
Waiting before move to slot state will be visited. The next state Moving to drive
points that the needed tape for the current request is being moved to an empty
drive. Loading represents loading the tape into the drive. The state Positioning
indicates that the tape is being positioned and the state In use means that the
tape is being read or written. When the transfer is finished the tape becomes
idle and the request is done.

Shortcuts of the described path are possible for certain cases: for instance if
the needed tape is already mounted then the request processing starts from the
Positioning state.

The simulation algorithm is based on the state transition diagram shown
before. Based on previous measurements the time of completion for each state
(except the Waiting state) is estimated. It can be fixed or dependent on such
parameters like position of the tape, size of fragment, transfer rate. The com-
pletion time of the Waiting state is estimated by simulating processing of the
previous requests, which have possibly occupied resources for which the current
request is waiting. The overall estimation is done by summing up the completion
times for the states passed through during the processing.

4.2 Implementation

For the FiFra TSS implementation of the open approach an additional daemon,
called SIMUD (Simulator Daemon) is introduced. It communicates with REPD,
TFMD and the client application. At its initializing phase SIMUD requests in-
formation from REPD about the current state of the TSS and starts waiting for
events. REPD has been modified by adding a new command sendstat, which
is used by SIMUD to retrieve the initial TSS state information. Event reporting
functions have been added to the source code of the REPD and TFMD daemons.
The reporting is done via dispatching an appropriate command to SIMUD. This
command can be NEWREQ reporting a new request, STATCH reporting state change
of request, DELREQ reporting that a request has been finished. The client can ask
SIMUD to simulate ETA of a given request by using SIMETA command.

4.3 Preliminary Results

Comparisons between the latency times for the real and simulated systems are
presented below. Measurements were done for a sequence of 100 requests, gener-
ated every 60 or 100 seconds, according to the zipf distribution. The simulated
TSS was configured with two DLT tape drives.

The results presented in Fig.4 show that the TSS is overloaded, because the
latency time of the subsequent requests tends to be higher. The characteristics
for the real and the estimated startup latency are similar - the fluctuations
occur for the same request number. In Fig.5 where the interval between requests

878 D. Nikolow et al.

 0

 500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100
request number

la
te

nc
y

[s
]

real latency
estimated latency

 0

 200

 400

 600

 800

1000

0 20 40 60 80 100
request number

la
te

nc
y

[s
]

real latency
estimated latency

Fig. 4. Comparison between the real
and estimated startup latency (with 60
seconds interval between requests).

Fig. 5. Comparison between the real
and estimated startup latency (with 100
seconds interval between requests).

is higher the system can handle the coming requests better (with no increasing
tendency). In this case the characteristics are also similar but the relative error
is higher.

In Fig.6 and Fig.7 the histograms of the relative error of the estimated latency
are presented. For the overloaded system (Fig.6) about 80% of the estimations
are obtained with the error below 20%. For the latter case (see Fig.7) 80% of
the estimations have error below 45%. The relative error in this case is higher
due to smaller latency absolute values, because for only few requests in the
queue the positioning time error can vary a lot. This feature follows from the
ideal DLT tape positioning model implemented in this study. The difference is
higher especially when the block to position to is far from the beginning of the
tape. When there are more requests this error is smaller because of averaging
of positioning times. More accurate results could be obtained by using the low
cost access time model for serpentine tape drives proposed in [9] which we plan
to use.

5 Future Works

The future work concentrates on the estimation of the access time for tertiary
storage systems in which no changes of the source code are allowed. Our first
target is the UniTree HSM system with the gray-box approach implemented.
Estimation of the access time will be based on knowledge about UniTree HSM
system operations and on various data gathered from the available utilities de-
livered by the vendor.

In Fig.8 the mentioned approach is presented. The core of the system is the
TSS Simulator similar to that presented in Section 4. Again, the square brackets
represent the calling sequence. TSS Monitor will collect the necessary data about
the UniTree state. Request Monitor & Proxy catches client requests in order to

Access Time Estimation for Tertiary Storage Systems 879

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 20 40 60 80 100
error [%]

nu
m

be
r

of
 r

eq
ue

st
s

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 20 40 60 80 100
error [%]

nu
m

be
r

of
 r

eq
ue

st
s

Fig. 6. Histogram of relative error of the
estimated latency (with 60 seconds inter-
val between requests).

Fig. 7. Histogram of relative error of the
estimated latency (with 100 seconds in-
terval between requests).

databases logs

Monitoring
 tools

Disk cache

conf. files

TSS
Monitor

TSS
Simulator

Request
Monitor & Proxy

Client

fileid ETA? [1]

TSS
events
collecting update [4]

TSS state [5]

ETA [6]

fileid [2]

queue state [3]

feedback [12]

fileid [9]

data [10]

data [11]
fileid [8]

ETA [7]

Fig. 8. Gray-box TSS approach.

get more detailed information (queue order, file identifiers, time statistics) about
the requests being processed by the UniTree.

We also plan to check (and change eventually) the DLT access time model
for the cases when the hardware compression is on (which is the usual case).

6 Conclusions

In this paper we have focused on the problem of estimating the access time of
data stored on the tertiary storage. We implemented the access time estimation
method for a TSS (developed at our site) using the open system approach.
The system has been tested and preliminary results obtained. The results show
that the estimation errors are lower when the TSS is overloaded. A further
improving of the system is necessary since our goal is to estimate the latency
time more accurately even if there is only one or few requests in the queue. This
will be done by implementing better access time model for the DLT tape drives.

880 D. Nikolow et al.

Further increasing of the accuracy will be obtained by changing the simulator to
automatically tune itself based on comparing each state completion estimated
time with the real one.

The lessons learned during the implementation, testing and tuning of the
open TSS approach are useful for the gray-box TSS approach.

The presented work concentrates on TSS with DLT drives, which seem to
have the most complicated access time model compared to the other tertiary
storage devices. Adding support for the other devices, like magneto-optical drives
will imply just simplifying of the DLT model.

The TSS access time estimation could improve the efficiency of the Grid
replica selection and migration services. The TSS Simulator could be used to
supply information about the TSS state to the Grid monitoring services for
optimizing data access for the Grid applications.

Acknowledgements

The work described in this paper was supported in part by the European Union
through the IST-2001-32243 project “CrossGrid”. AGH grant is also acknowl-
edged.

References

1. Vazhkudai, S., Tuecke, S., Foster, I., “Replica Selection in the Globus Data Grid”,
in Proc. of the IEEE International Conference on Cluster Computing and the Grid
(CCGRID 2001), Brisbane, Australia, May 2001.

2. “CROSSGRID - Developement of Grid Environment for Interactive Applications”,
EU Project no.: IST-2001-32243.

3. Meter, R., V., “SLEDs: Storage latency estimation descriptors”, In Ben Kobler,
editor, in Proc. 6th NASA Goddard Conference on Mass Storage Syst. and Tech.
in Coop. with 15th IEEE Symp. on Mass Storage Syst., pp. 249-260, March 1998.

4. Meter, R., V., Gao, M., “Latency Management in Storage Systems”, in Proc. of
the 4th Symp. on Operating Syst. Design and Implementation (OSDI’00), October
2000.

5. Shen, X., Choudhary, A., “A Distributed Multi Storage Resource Architecture and
I/O Performance Prediction for Scientific Computing” in Proc. 9th IEEE Symp.
on High Performance Distributed Computing, pp.21-30, IEEE Computer Society
Press, 2000.

6. Shen, X., Liao, W., Choudhary, A., “Remote I/O Optimization and Evaluation for
Tertiary Storage Systems through Storage Resource Broker”, in IASTED Applied
Informatics, Innsbruck, Austria, February, 2001.

7. Baru, C., Moore, R., Rajasekar, A., Wan, M., “The SDSC Storage Resource Bro-
ker”, in Proc. CASCON’98 Conference, Toronto, Canada, Dec. 1998.

8. Nikolow, D., SHlota, R., Kitowski, J., Nyczyk, P., Otfinowski, J., “Tertiary Storage
System for Index-based Retrieving of Video Sequences”, Lecture Notes in Com-
puter Science, 2110, pp.435-444, Springer, 2001.

9. Sandst̊a, O., Midstraum, R., “Low-Cost Access Time Model for Serpentine Tape
Drives”, in Proc. of 16th IEEE Symposium on Mass Storage Systems the 7th
NASA Goddard Conference on Mass Storage Systems and Technologies, San Diego,
California, USA, March 1999, pp. 116-127.

	1 Introduction
	2 Related Work
	3 Description of the FiFra TSS
	3.1 Background
	3.2 Architecture of the FiFra TSS

	4 Open TSS Approach for Access Time Estimation
	4.1 General Design
	4.2 Implementation
	4.3 Preliminary Results

	5 Future Works
	6 Conclusions
	Acknowledgements
	References

