
Algorithm Design and Performance Prediction
in a Java-Based Grid System with Skeletons

Martin Alt, Holger Bischof, and Sergei Gorlatch

Technical University of Berlin, Germany

Abstract. We address the challenging problem of algorithm design for
the Grid by providing the application user with a set of high-level, pa-
rameterized components called skeletons. We describe a Java-based Grid
programming system in which algorithms are composed of skeletons. The
advantage of our approach is that skeletons are reusable for different ap-
plications and that skeletons’ implementations can be tuned to particular
machines of the Grid with quite well-predictable performance.

1 Introduction

One of the main challenges in application programming for the Grid is the phase
of algorithm design and, in particular, performance prediction early on in the
design process: it is difficult to choose the right algorithmic structure and perform
architecture-specific optimizations of an application, because the type of machine
the program will actually be executed on is not known in advance.

We propose providing Grid application programmers with a set of high-level
algorithmic patterns, called skeletons. Skeletons are used as program compo-
nents, customizable for particular applications. Computational servers of the
Grid provide possibly different, architecture-dependent implementations of the
skeletons, which can be tuned for execution on particular Grid servers.

The advantage of our approach is that applications can be conveniently ex-
pressed using reusable algorithmic skeletons, for which reliable performance esti-
mates on a particular Grid server are available. This facilitates systematic rather
than ad hoc design decisions on both the algorithmic structure of an application
and the assignment of application parts to servers.

In this paper, we describe an experimental Java-based programming system
with skeletons for a Grid environment, with focus on the critical problem of
performance prediction in the course of algorithm design. The particular contri-
butions and the structure of the paper are as follows:
– An architecture of the Grid programming system is proposed, in which the
user chooses a suitable server for each skeleton invocation in his application
program (Section 2).

– A Java+RMI experimental implementation is presented, with Java bytecodes
used as application-specific parameters of skeletons (Section 3).

– A simple performance model for remote execution of skeletons on the Grid
servers is proposed and tested using system measurements. (Section 4).

We conclude the paper by discussing our findings in the context of related work.

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 899–906.
c© Springer-Verlag Berlin Heidelberg 2002



900 M. Alt, H. Bischof, and S. Gorlatch

2 System Architecture and Skeletons

The idea of Grid programming with skeletons is to separate two phases of pro-
gramming – algorithm design and implementation. The user composes his pro-
gram using predefined algorithmic patterns (skeletons), which appear as function
calls with application-specific parameters. The actual organization of parallelism
is left to the skeleton implementation, which is provided on the server side and is
geared to a particular architecture of a Grid server, e. g. distributed- or shared-
memory, multithreaded, etc.

2

4

1

5

3

Server
Compute

Client GUI

Compute

prediction
performance, cost

available skeletons

Lookup Service

register

parameters, data

Server

composition

...
...

result

request-reply

Client GUI

Fig. 1. System architecture and interaction of its parts

We propose the following system architecture, consisting of three kinds of
components: user machines (clients), target machines (servers) and the central
entity, called lookup service (see Fig. 1).

Each server provides a set of skeletons that can be invoked from the clients.
Invoking skeletons remotely involves the following steps, also shown in Figure 1:

➀ Registration: Each server registers the skeletons it provides with the lookup
service to make them accessible to clients. Together with each skeleton, a
performance estimation function is registered, as explained below.

➁ Service request-reply: A client queries the lookup service for a skeleton it
needs for an application and is given a list of servers implementing the skele-
ton. The skeletons that will actually be used are selected (using heuristics
or tool-driven by the user).

➂ Skeleton invocation: During the program execution, skeletons are invoked
remotely with application-specific parameters.

➃ Composition: If the application consists of a composition of skeletons, they
may all be executed either on the same server or, alternatively, in a pipelined
manner across several servers.

➄ Skeleton completion: When the compute server has completed the invoked
skeleton, the result is sent back to the client.

Skeleton Examples. In this paper, we confine our attention to so-called data-
parallel skeletons whose parallelism stems from partitioning the data among pro-
cessors and performing computations simultaneously on different data chunks.



Algorithms and Performance in a Java-Based Grid System with Skeletons 901

For the sake of simplicity, our running example in the paper is an elementary
data-parallel skeleton called reduction: function reduce(⊕) computes the “sum”
of all elements in a data structure using the associative customizing operator ⊕.
For example, for a list of three elements [a, b, c], the result is a ⊕ b ⊕ c.

Formally, reduce is a higher-order function whose argument is the customiz-
ing operator ⊕. Implementations of reduce on particular servers are parameter-
ized with ⊕ as well; they expect the operator to be provided during invocation.
Note that the customizing operator ⊕ itself may be time-consuming: e. g. below
we consider reduction on a list of matrices, where the operator denotes matrix
multiplication. Another, quite similar example is the scan skeleton, scan(⊕),
which computes the prefix sums using an associative operator ⊕, i. e. applying
scan(⊕) to list [a, b, c] would result in [a, a ⊕ b, a ⊕ b ⊕ c]. Skeletons can also
express more complex algorithmic patterns. For example, divide-and-conquer
recursion can be expressed as a skeleton DC(d, e, c), whose parameters are a
divide function d (mapping a list to two sublists), function e to apply to lists of
length one and a conquer function c (to combine two partial results into one).

3 System Implementation

The system sketched in Figure 1 was implemented in Java, using RMI for com-
munication. Java has several advantages for our purposes. First of all, Java byte-
codes are portable across a broad range of machines. The skeleton’s customiz-
ing functional parameters can therefore be used on any of the server machines
without rewriting or recompilation. Moreover, Java and RMI provide simple
mechanisms for invoking a method (skeleton) remotely on the server.

The interaction between the system components – client, compute server
and lookup server – is realized by implementing a set of remote interfaces known
to all components. Figure 2 shows a simplified UML class diagram for the most
important classes and interfaces of our implementation. Dashed lines with a solid
triangle arrowhead connect interfaces and their implementing classes, while open
arrowheads denote the “uses” relationship.

Compute Servers provide data-parallel skeletons that are remotely invoked by
the clients. For each skeleton, a corresponding interface can be implemented on
several servers. For example, for the reduction skeleton, interface Reduce is im-
plemented by ReduceImpl in Figure 2; for the scan skeleton, interface Scan is
implemented, etc. Skeleton implementations are adaptable to the server’s ma-
chine type: e.g. they may be multithreaded Java programs for UMA multiproces-
sors, MPI programs for clusters, etc. Customizing operators are obtained from
the client as classes implementing appropriate remote interfaces, e. g. operators
for the reduction skeleton implement the BinOp interface. The necessary code
shipping is handled transparently by RMI. The system is easily extensible: to
add a new skeleton, an appropriate interface must be specified and copied to
the codebase, along with any other necessary interfaces (e. g. operators with
three parameters). The interfaces can then be implemented on the server and
registered with the lookup service in the usual manner.



902 M. Alt, H. Bischof, and S. Gorlatch

Class ReduceImpl Class BinOpImp

Interface ReturnRef

Server Client

Class resultHandler

Remote Interfaces

Interface BinOp

Interface LookupService

Interface Service

ServiceDescriptor

Interface Reduce+name: String
+type: Class
+service: Service
+server: ServerData

+perfEstimate(n,p,opTime): int

+lookupService(skeleton:Class): ServiceDescriptor
+lookupService(name:String): ServiceDescriptor
+registerService(ServiceDescriptor)
+unregisterService(ServiceDescriptor)

+exec(Object,Object): Object

+setResult(result:Object)

+execAsynch(list:Object[],operator:BinOp,r:ReturnRef): Object
+exec(list:Object[],operator:BinOp): Object

+serviceDescriptor

Fig. 2. Simplified class diagram of the implementation

Lookup Service administers the list of available skeletons and is running on its
own server. Its hostname and port are known to all servers and clients. Each en-
try in the list consists of an object of class ServiceDescriptor, containing the
skeleton’s name and the implementing servers, a remote reference to the skele-
ton’s implementation on the server side and a performance-estimation function
(cf. Section 4).

Clients and servers interact with the lookup service by calling methods of
the LookupService interface shown in the class diagram: registerService is
used by the servers to register their skeletons, and lookupService is used by
the clients to query for a particular skeleton.

Clients run a simple GUI for program development and server selection. On
startup, the lookup service is contacted to obtain a list of all available skeletons.
The user can then specify the structure of the program graphically: selected
skeletons are displayed as nodes of a directed graph, with an edge between two
skeletons if one provides input data for the other (composition). A special skele-
ton “local” is used to represent local (client-sided) computations in the graph.

From the graphical representation, a partial Java program is generated. It
contains all skeleton calls and class definitions for classes that must be imple-
mented by the user (e. g. customizing operators for skeletons). For each pair of
server and skeleton, a performance estimate for that pair is computed, as ex-
plained in more detail in Section 4. Using this prediction, the user assigns a
server to each particular skeleton invocation.

Skeleton Invocation is implemented using Java’s RMI mechanism. This has the
advantage that all parameter marshalling and unmarshalling as well as code
shipping are handled transparently by the RMI system. One drawback, how-
ever, is the absence of asynchronous method invocation in RMI. We remedy this
situation by providing a second implementation for each skeleton, implementing
an asynchronous invocation. The executeAsynch method of a skeleton’s inter-
face immediately returns a remote reference to an object of class rObject which



Algorithms and Performance in a Java-Based Grid System with Skeletons 903

resides on the server side. To obtain the skeleton’s result, the client invokes the
rObject’s getResult() method, which blocks until the results are available.
The transmission of data is again handled by RMI.

Skeleton composition is also handled using rObjects. For each skeleton, an-
other execute method is provided, which receives parameters of type rObject.
Thus, it is possible to express composition by simply writing
result=skeleton2.execute(skeleton1.executeAsynch(...));.
As executeAsynch only returns a remote reference, the results are not sent from
the server back to the client, and from there on to the next server; instead only
remote references are passed on. The second server can then obtain the data
directly via the getResult() method.

4 Skeleton Performance Prediction

Intuitively, a client should delegate the skeleton execution to a particular Grid
server if the skeleton is expected to execute faster on the server than locally or on
another server. Invoking a skeleton remotely involves the time costs of sending
arguments to and receiving results from the server. Thus, the decision about
where to execute a skeleton is influenced by two main factors: performance gain
and communication costs.

To decide whether to compute a skeleton remotely – and, if so, then on which
server – it is necessary to predict both communication costs and performance
gain. Thus, each server in our system provides a function describing the perfor-
mance of each skeleton implemented by it. A client obtains this function tskel
from the lookup service for every server on which the skeleton skel is available.
The total time T for remote execution can be computed as follows:

T = 2ts + (n + o+ r)tw + tskel(n, p, t⊕) (1)

n being the size of the parameters, o the size of the operator’s bytecode (which
must be sent to the server as well) and r the size of the result. The number of
processors is p, and t⊕ is the time taken to execute the customizing operator ⊕.

Let us consider the reduce skeleton example. Our experimental parallel im-
plementation of reduction partitions the list into p sublists, with one thread
computing the reduction sequentially on each sublist. The partial results are
then reduced sequentially in one thread. The time taken to execute the reduce
skeleton using this algorithm is

tred(n, p, t⊕) = (�n/p� − 1)t⊕ + (p − 1)t⊕ (2)

This algorithm can obviously be improved by organizing the reduction of partial
results in a tree-like manner.

We measured the execution time for the reduce skeleton’s implementation
mentioned above, with 20 × 20 matrices as list elements and matrix multi-
plication as the operator. For all measurements, a SUN Ultra 5 Workstation
with an UltraSparc-IIi processor running at 360MHz (“client”) and a SunFire



904 M. Alt, H. Bischof, and S. Gorlatch

6800 shared-memory SMP system with 16 UltraSparc-III processors at 750MHz
(“server”) were used. They are connected via a WAN, the client being at the
University of Erlangen and the server at the Technical University of Berlin, with
a distance of about 500 km between them.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e 
[m

s]

List Size

Measured (4 Threads)
Predicted (4 Threads)

Measured avg. (4 Threads)
Measured (2 Threads)
Predicted (2 Threads)

Measured avg. (2 Threads)

tred t′
red t⊕ ts tw T1 T2

Time [ms] 312.18 320.4 1.21 13.371 0.406 755 797

Fig. 3. Predicted and measured execution time for reduce skeleton

The table in Figure 3 contains the measured time t⊕ for executing the cus-
tomizing operator (matrix multiplication) on the server. The time tred for reduc-
ing a list of 1024 matrices was predicted, using the prediction function for the
reduce skeleton given by equation (2) above. The obtained value is quite close to
the measured time (t′red in the table), though the latter is slightly higher owing
to the overhead for synchronizing threads. The table also contains values ts and
tw for sending messages via the WAN from Erlangen to Berlin (note that tw
is the time taken to transmit one matrix). The values were measured by send-
ing messages of varying size from the client to the server, without invoking any
skeletons. For the total time T for executing the reduce skeleton remotely, two
values are given: T1 is obtained using the predicted value for tred together with
equation (1); T2 is the actual value measured when invoking the reduce skeleton
remotely (the average over 10 invocations). The measured value is approximately
5% larger than the predicted one.

In the graph shown in Figure 3, the measured values for lists of sizes 256,
512, 1024 and 2048 are compared to the predicted values. For each list size, the
values were measured ten times using the same setting as described above, with
two and four threads. The measured values vary considerably (up to 20% for
list size 1024 and 4 threads) owing to load changes on the server and varying



Algorithms and Performance in a Java-Based Grid System with Skeletons 905

network traffic. Thus, the predicted value differs up to 18% from the measured
one. Most measured values are, however, much closer to the predicted ones, with
differences of only 2 or 3%. Comparing the predicted values to the average values
over all ten measurements, the differences are less than 7%.

4.1 Operator Performance Prediction

To achieve realistic time estimates for skeleton execution, it is important to pre-
dict accurately both the runtime of the customizing functional arguments (which
are Java bytecodes) and the Grid network parameters. While many tools for pre-
dicting network performance are available, e. g. the Network Weather Service [6],
very little is known about predicting the performance of Java bytecodes.

The simplest way to predict the runtime of an operator would be to send the
operator’s bytecode to the server, along with a sample set of operands, execute
it there and obtain the execution time. Although very accurate time values can
be expected, this method consumes a considerable amount of both network and
computational resources on the server side, which is a significant drawback. We
therefore investigate two approaches that do not involve computations on the
server side or communication between client and server: (1) bytecode analysis,
and (2) bytecode benchmarking.

Performance Prediction through Bytecode Analysis. To estimate the operator’s
runtime, we can execute it in a special JVM on the client side, counting how often
each instruction is invoked. The obtained numbers for each instruction are then
multiplied by a time value for that instruction. Our experiments have shown,
that this approach, however, poses the problem of finding valid time values for
single instruction runtimes. One way to obtain values that give promising results
is reported in [1].

Performance Prediction through Benchmarking. An alternative way of estimat-
ing the performance of the operator’s Java bytecode is to measure the achievable
speedup a priori, by running a benchmark on the server and comparing the re-
sult for the benchmark execution on the server side to the runtime of the same
benchmark on the client. Then, to obtain an estimate for the execution time
of an operator on the server, the time for execution on the client is taken and
multiplied by the measured speedup for the benchmark. To increase the accu-
racy of such performance predictions, several benchmarks containing different
instruction mixes (arithmetic instructions, comparison operations, etc.) could
be executed on the server. The client then picks the benchmark that appears
suitable for the operator in question and uses this to compute a performance
estimate as described above.

5 Related Work and Conclusions

Initial research on Grid computing focused, quite naturally, on developing the en-
abling infrastructure, systems like Globus, Legion and Condor being the promi-



906 M. Alt, H. Bischof, and S. Gorlatch

nent examples presented in the seminal “Grid-book” [3]. The next wave of inter-
est focused on particular classes of applications and supporting tools for them,
with such important projects as Netsolve [2], GridPP [5] and Cactus.

We feel that algorithmic and programming methodology aspects have been
partly neglected at this early stage of Grid research and are therefore not yet
properly understood. The main difficulty is the unpredictable nature of the Grid
resources, resulting in difficult-to-predict behaviour of algorithms and programs.
Initial experience has shown that entirely new approaches to software develop-
ment and programming are required for the Grid [4].

Our work attempts to overcome the difficulties of algorithm design for Grids
by using higher-order, parameterized programming constructs called skeletons.
The advantage of skeletons is their high level of abstraction combined with an
efficient implementation, tuned to a particular node of the Grid. Even complex
applications composed of skeletons have a simple structure, and at the same
time each skeleton can exemplify quite a complicated parallel or multithreaded
structure in its implementation.

In the experimental programming system described in this paper, we focused
on the problem of mapping the parts of an application to particular Grid ma-
chines and on the especially challenging problem of performance predictability.
The initial results reported here are quite encouraging: they show that even in a
heterogeneous, geographically distributed Grid environment the use of skeletons
leads to more structured, predictable applications.

The grid system presented in our paper is still in an early stage and lacking
many important services, such as resource allocation and authentication services.
These issues can be addressed by using a more sophisticated infrastructure, such
as provided by the Globus toolkit ([3]).

References

1. M. Alt, H. Bischof, and S. Gorlatch. Program development for computational grids
using skeletons and performance prediction. In Third Int. Workshop on Construc-
tive Methods for Parallel Programming (CMPP2002), Technical Report. Technische
Universität Berlin, 2002. To appear.

2. H. Casanova and J. Dongarra. NetSolve: A network-enabled server for solving com-
putational science problems. Int. J. of Supercomputing Applications and High Per-
formance Computing, 3(11):212–223, 1997.

3. I. Foster and C. Kesselmann, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1998.

4. K. Kennedy et al. Toward a framework for preparing and executing adaptive grid
programs. In Proceedings of NSF Next Generation Systems Program Workshop (In-
ternational Parallel and Distributed Processing Symposium 2002), Fort Lauderdale,
April 2002.

5. R. Perrot. Testbeds for the GridPP. First US-UK Workshop on Grid Computing.
6. R. Wolski, N. Spring, and J. Hayes. The network weather service: A distributed

resource performance forecasting service for metacomputing. Journal of Future
Generation Computing Systems, 15(5-6):757–768, October 1999.


	1 Introduction
	2 System Architecture and Skeletons
	3 System Implementation
	4 Skeleton Performance Prediction
	4.1 Operator Performance Prediction

	5 Related Work and Conclusions
	References

