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1 Institute of Computer Science, Technical University of Chemnitz, Germany
2 Institute of Computer Science, Wroc�aw University, Poland

3 Institute of Mathematics, Wroc�aw University of Technology
and Dept. of Math. and Computer Science, A. Mickiewicz University,
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Abstract. Quite often algorithms designed for no-collision-detection radio net-
works use a hidden form of collision detection: it is assumed that a station can
simultaneously send and listen. Then, if it cannot hear its own message, then ap-
parently a collision has occurred. IEEE Standard 802.11 says that a station can
either send or listen to a radio channel, but not both. So we consider a weak ra-
dio network model with no collision detection where a station can either send or
receive signals. Otherwise we talk about strong model.
We show that power of weak and strong radio networks differ substantially in
deterministic case. On the other hand, we present an efficient simulation of strong
by weak ones, with randomized preprocessing of O(n) steps and O(log log n)
energy cost.

1 Introduction

Radio networks became today an attractive alternative for wired ones. Luck of a fixed
infrastructure andmobility allow to create self-adjusting network of independent devices
that is useful for application areas such as disaster-relief, law-enforcement, and so on.The
main advantages are dynamic topology and simple communication protocol. However,
colliding messages create many challenging problems.

We are interested in networks of stations communicating via radio channels. The
stations are hand-held bulk produced devices running on batteries. They have no ID’s or
serial numbers, some of the stations are switched off, but somehow the network has to
organize itself, despite the lack of a central control. It is often overlooked by designers of
algorithms for radio networks that many current technologies do not provide capability
of listening while a station is sending (IEEE Standard 802.11). On the other hand,
simultaneous sending and listening for collisions is a feature used in many algorithms.
Our goal is to check how does it influence problem complexity on radio networks.

Model. A radio network (RN, for short) consists of several processing units called
stations. A RN is synchronized by a global clock (for instance based on GPS). Com-
munication is possible in time slots, called here steps. We assume that there is a single
communication channel available to all stations (so we consider single-channel, single-
hop RN’s). If during a step stations may either send (broadcast) a message or listen to
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the channel, then we talk about weak RN. If both operations can be performed by a
station, then we have to do with the strong RN. (In the literature, by a RN the authors
usually mean the strong RN.) If exactly one station sends, then all stations that listen
at this moment receive the message sent. We assume in this paper that if at least two
stations send, then a collision occurs and the stations that listen do not receive messages
and even cannot recognize that messages have been sent (no collision-detection RN).
If a station is the only station that sends a message during step i, then we say that the
station succeeds and that step i is successful.

The stations of a RN fall into two categories. Some of them are switched off and
do not participate in the protocol. The other stations are active and we assume that they
stay active during the whole protocol. The set of all active stations is called active set.
During a step an active station might be either awake or asleep. The first case occurs
when a station sends a message or listens to the communication channel.

Complexity Measures. There are two main complexity measures for RN algorithms:
time complexity and energy cost [12]. Time complexity is the number of steps executed.
Energy cost is the maximum over all stations of the number of steps in which the station
is awake. Low energy cost is a desirable feature: if a station which is awake for a longer
time, it may fail to operate due to batteries exhaustion [3]. So a station which is awake
much longer than the other stations is likely to fail and break down the protocol.

For further discussion on the RN model and its complexity measures, see e.g.
[2,8,9,10,11,12,14,15].

Fundamental Tasks. Due to the lack of ID numbers, uncertainty about the number of
active stations, switching off the stations, and so on, certain problems become hard for
RN’s, while they are much easier in the wired networks. Some of such basic tasks are
the following:

Leader Election: active stations have to choose a single station, called leader, among
themselves. That is, at the end of the protocol a single station has status leader and
all other active stations have status non-leader.

Initialization: consecutive ID numbers are to be assigned to active stations with no
ID’s.

Renumeration: consecutive ID numbers are to be assigned to active stations having
some unique ID’s, but in the range bigger than the number of stations.

2 Previous Results

Due to the role of energy cost, there is a lot of interest for algorithms that are time and
energy efficient. However, research has been focused on the strong model.

For leader election, the first energy efficient algorithm has been designed in [11].
The authors present a randomized algorithm that for n stations elects a leader (nmust be
known to the stations) in timeO(log f) and energyO(log log f + log f

log n )with probability
1−1/f for any f ≥ 1. Moreover, they get algorithms that elect a leader withinO(log n)
energy cost and O(log2 n) time with probability 1 − 1

n if n is unknown. [6] presents
an algorithm which achieves O(log n) time and O(log∗ n) energy cost with probability
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1 − 1
n when n is known to the stations. If n is unknown, a general algorithm that

approximates the value of n within a constant multiplicative factor can be applied [5].
It uses time O(log2+ε n) and energy cost O((log log n)ε) with probability 1− 1

n .
It is impossible to elect a leader deterministicallywhen stations are indistinguishable,

due to symmetry. So we apply deterministic algorithms only when the stations have
unique ID’s, say in the range [1..n] (but any subset of these ID’s may correspond to
active stations). A simple leader election deterministic algorithm for this case is given
in [11,12]. Its energy cost is log n+O(1), run time is n+O(1). A recursive procedure
that works in time O(n) and energy O(logε n) is given in [6].

An energy efficient solution to initialization problem is proposed in [12]: with proba-
bility at least 1− 1

n its energy cost isO(log log n) and execution time isO(n). However,
the number of stations nmust be known beforehand. The algorithm can be easily gener-
alized to the case when an approximation of n within a constant multiplicative factor is
known. Hence using size-approximation algorithm from [5], the same time and energy
efficiency can be obtained for an unknown n.

3 New Results

The main result of this paper is a randomized protocol for simulating algorithms for
strong RN’s by weak RN’s.

Theorem 1. An algorithm for strong RN with run time T and energy costE can be sim-
ulated by a randomized weak RNwith run timeO(T ) and energy costO(max(E, T/n)).
A preprocessing is required with time O(n) and energy cost O(log log n).

Before we construct the simulation algorithm (presented in Sections 5-7), we show
in Section 4 that the situation is much different in deterministic setting:

Theorem 2. Leader election has energy cost Ω(log n) on deterministic weak RN’s.

This result is interesting since on the other hand there is a solution for the strong
model that works in time O(n) and energy O(logε n) [6]. For a more practical solution
with energy cost O(

√
log n) see [7].

4 Gap between Weak and Strong Models

In this section we prove Theorem 2. Let the stations have distinct identifiers in the range
{1, . . . , n}, but the number of active stations might be arbitrary up to n. We construct
sets A0, A1, . . . such that for every i, if I ⊆ Ai is the active set, j ∈ I and |Ai| > 1,
then the station j cannot decide if it is the leader after step i. Moreover, we impose some
other properties that guarantee that |Ai| > 0 and the equality Ai = {j} implies that
station j is awake at least Ω(log n) times up to step i (if the active set is equal to Ai).

Let A0 = {1, . . . , n}. For i > 0 let Si (Ri resp.) be a set of stations that send a
message (listen, resp.) during step i, if the active set is Ai−1. For definition of Ai we
use an auxiliary “weight” wi(j) of station j at step i. It fulfills the following invariant:∑

j∈Ai
wi(j) = n for i ∈ N. We start with w0(j) = 1 for i = 1, . . . , n. We put

Ai = Ai−1\Ri if
∑

j∈Si
wi(j) >

∑
j∈Ri

wi(j) and Ai = Ai−1\Si otherwise. If
Ai = Ai−1\Ri, then
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– wi(j) = wi−1(j) for every j ∈ Ai\Si

– wi(j) = wi−1(j)+vj for every j ∈ Si, where vj = wi−1(j)∑
l∈Si

wi−1(l)
·∑l∈Ri

wi−1(l).

IfAi = Ai−1\Si, then the weights are defined similarly. Obviously, the weights defined
in such away satisfy the invariant.Note that above rules guarantee thatwi(j) ≤ 2wi−1(j)
for every i, j. Moreover, wi(j) > wi−1(j) if and only if j is awake at the step i (for
active sets contained in Ai).

Proposition 1. Let j ∈ Ai. Then station j does not hear any message up to step i for
any active set I ⊆ Ai such that j ∈ I .

Proof. The proof is by induction on i. The case i = 0 is obvious. Assume that the
property holds for i− 1. If Ai = Ai−1\Ri, then all awake stations from Ai are sending
and nobody listens. So no information is reaching anybody. If Ai = Ai−1\Si, then all
awake stations are listening, but nobody sends a message at step i, so no awake station
of Ai gets any information. ✷ Proposition 1

Proposition 2. If the active set is equal to I ⊆ Ai and j ∈ I , then wi(j) ≤ 2l, where l
is the number of steps among steps 1 through i during which station j was awake.

Proof.We show it by induction with respect to i. The case i = 0 is obvious. For i > 0,
it is enough to observe that the new factor added to the weight is smaller than the “old”
weight and the weight may increase only when a station is awake. ✷ Proposition 2

By Proposition 1, if |Ai| > 1 and j ∈ Ai, then the station j is unable to distinguish
after i steps between active sets {j} and Ai. Let l be the leader elected for active set
Ai and j ∈ Ai\{l}. Then station j cannot decide if it is the leader after the step i (it
becomes the leader if the active set is equal to {j} and it is not the leader if the active
set is Ai). We conclude that if |Ai| > 1, then the algorithm cannot terminate after step
i. Since |Ai| > 0 for every i > 0, the algorithm can terminate after step i for the active
set Ai if and only if |Ai| = 1. Let j be the only element of such Ai. Then wi(j) = n
and by Proposition 2, station j is awake at least log n times during steps 1, . . . , i.

5 Algorithmic Tricks for Weak RN’s

Although energy cost of deterministic leader election is different for weak and strong
RN’s, in the randomized case the best algorithms can be run on weak RN’s [6], using
tricks presented below.Moreover, a linear approximation of the number of active stations
may be obtained efficiently by randomized algorithm, using a method designed for the
strongmodel. This indicates that randomization may really help. In this section wemake
some observations that help to design “strong algorithms” in weak RN’s.

Previous RN algorithms use very often the following basic trick ([4,12,11,15]):
given n active stations, each of them sends with probability 1/n. Then with probability
n · 1

n ·
(
1− 1

n

)n−1 ≈ 1
e exactly one station sends. In the strong model, the station that

succeeds may recognize it. This experiment can be used for randomized leader election
in the strong model: we apply the experiment lnn times and use Basic Algorithm for
leader election over those stations that have been successful during lnn experiments
(with ID’s equal to numbers of successive steps).
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PairingTrick in theWeakModel. Themethod described above cannot be implemented
directly in the weak model. However, this problem can be eluded as follows:

1. each station chooses uniformly at random to be either sender or receiver,
2. each sender transmits a message with probability 2

n ,
3. each receiver listens with probability 2

n and if a message is received, it responds
with the same message,

4. each sender that have sent a message at step 2 listens. If it receives its own message
now, then it was the only station sending at step 2.

In this procedure it may happen that a station sending a message is successful, but it does
not receive a confirmation since more than one receiver is sending it. Nevertheless, we
show that the probability that one station sends a message and receives a confirmation
is bounded from below by a constant close to 1

e2 . First observe that the probability that

there are more than n/2 + n2/3 senders is at most en1/3/6 by Chernoff bound [13]. If
there are n

2 + d senders, d < n2/3, then probability of getting a confirmation equals

(
(n

2 + d) · 2
n ·

(
1− 2

n

)n/2−1+d
)
·
(
(n

2 − d) · 2
n ·

(
1− 2

n

)n/2−1−d
)

≈ 1
e2 ·

(
1− d2

(n/2)2

)
> 1

e2 ·
(
1− 4

n2/3

)

Partial Initialization. Assume that among n stations we have already a fraction n/d
stations that have assigned unique ID numbers in the range 1..n/d - we call them the
first group. Then we are able to run an algorithm for the strong model on the remaining
n− n/d stations, called the second group, in the following way: step i of the algorithm
is simulated by the steps 2i − 1 and 2i. At step 2i − 1 the processors of the second
group execute step i of the algorithm. Additionally, the station 1 + i mod n

d from the
first group listens. At step 2i it sends the message received (if any). In turn, all stations
of the second group that have been sending during step 2i−1 are listening. This enables
them to recognize a collision, if it occurred at step 2i− 1.

Observe that for simulating n steps of an algorithm for strong model each of the
stations of the first group is awake for 2d steps. If d is small, for instance log log n, then
this energy cost might be smaller than the energy cost occurring for the stations of the
second group, and therefore acceptable.

6 Initialization

The best known algorithm for initialization [12] works in the strong model only: its key
point is that the stations assign themselves random ID’s in the range 1, . . . ,m for some
m ∈ N and verify their uniqueness in such a way that stations with ID equal to j send
at step j for j = 1, . . . ,m and check for collisions. For the weak model one may try to
re-use the pairing trick, i.e. split stations at random into senders and receivers, then each
sender sends a message and each receiver listens in the step equal to picked number and
they confirm uniqueness as in the pairing trick. However, it does not work well if there
are few stations choosing ID’s from a big set – but just this situation leads to double
logarithmic energy cost in [12].
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Let us outline our initialization algorithm. It consists of three main phases:

1. Assign temporary unique ID’s from the set {1, . . . , c1n} to a subset U of stations
such that |U | ≥ c2n, for some constants c1 and c2.

2. Run “renumeration” procedure on the elements ofU . This procedure assigns distinct
consecutive ID’s, starting with 1, to a large subset of U , say I .

3. Using the partial initialization trick run the initialization algorithm from [12] on the
stations that do not belong to I (with I as the first group).

Phase 1. Let us describe in detail the first phase:

(A) Split the set of stations into subsetsS0 andS1. Each station chooses bit b uniformly
at random. The stations that set b = i belong to the set Si.

(B) Each station picks an integer from the set {1, . . . , 3n} uniformly at random. Let
Sj

i be the set of elements of Si which choose number j.
(C) for j ← 1 to n do

the stations from Sj
1 and Sj

0 verify if |Sj
1| = |Sj

0| = 1: first all elements of Sj
1 send

and all elements of Sj
0 listen; in the next step all elements of Sj

1 listen and each
element of Sj

0 sends the message just heard; if the message comes through, then
|Sj

1| = |Sj
0| = 1 and the only element of Sj

1 sets ID← j.

Lemma 1. With probability at least 1 − 1
n2 the number of stations with assigned ID’s

is bigger than cn, for a constant c independent of n.

Proof. As we have already seen n/2 − n2/3 ≤ |Sb| ≤ n/2 + n2/3 for b = 0, 1 with
probability 1−e−n1/3/6. Thus assume that |Si| = cin, for i = 0, 1, where c0, c1 are very
close to 1/2, and c0 + c1 = 1. Let us consider the number of sets Sj

b such that |Sj
b | = 1.

We call the stations from suchSj
b ’s successful. Imagine that we pick numbers for stations

sequentially. If the jth station of Sb picks a number chosen already by the other station,
then we say that a collision occurs. Let pj be the probability that a collision occurs in
the jth step. It depends very much on the previous choices, but every time pj ≤ j−1

3n .
Let X be the number of collisions. We can bound (from above) the probability that
X > α (for any α) by the probability that Y =

∑cbn
i=1 Yi > α, where Yi are independent

random “0-1” variables such that P [Yj = 1] = j
3n . Observe that E [Y ] =

∑cbn
j=1

j
3n =

cbn(cbn−1)
2·3n . Together with Chernoff Bound [13] this yields

P
[
X > (cbn)2

3n

]
≤ P

[
Y > (cbn)2

3n

]
≤ e− cbn(cbn−1)

2·3·3n = O(n−4)

for n large enough. A collision may prevent at most two stations from being successful.
Thus the number of stations that are not successful is at most 2X . So the number of
successful stations in Sb is at least cbn − 2X ≥ cb − c2

bn2

3n = n(cb − c2
b

3 ) ≥ c′
bn with

high probability, where c′
b is a constant very close to 5

12 .
Now let us assume that the set of successful stations in Sb (for b = 0, 1) consists

of dbn elements, where db ≥ 1
3 . Fix d0n numbers associated to successful stations

from S0 (each subset of {1, . . . , 3n} of size d0n has equal probability). Now imagine
that we assign numbers to successful stations from S1 sequentially. The probability
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that the (j + 1)st station is “paired” with a successful station from S0 is not smaller
than d0n−j

3n−j ≥ d0n−j
3n . The expected number of “successful pairs” is not smaller than∑d

j=1
d0n−j

3n ≥ 1
3n · dn(dn−1)

2 ≥ d′n, where d = min(d0, d1) and d′ is a constant.
Finally, by Chernoff Bound [13], the number of “successful pairs” is bigger than d′n/2
with high probability, assuming that the sizes of S0 and S1 are close each other and
the number of successful stations in them are bigger than n/3. But this assumptions are
satisfied with high probability, too. ��

Renumeration. Now, we recall the following result from [6]: For no-collision detection
RN there is a deterministic leader election algorithm with log∗ n energy cost and time
O(n) that works for an arbitrary set of stations with distinct identifiers in the range 1..n
such that the number of active stations is at least c · n for any fixed constant c > 0. In
fact this algorithm works in the weak model. Moreover, it consists of O(log∗ n) phases
and the following properties are satisfied in the phase i:

– At least cixi active stations called masters participate in the phase.
– A set of at least c

2 · si active stations called slaves is assigned to each master. The
slaves of the master are numbered by consecutive numbers 1, 2, . . .

– Only one master remains after the last phase.

We havex1 = n, s1 = 2/c, c1 = c and ci+1 = ci/2,xi+1 = xi/2si , si+1 = ci+1 ·si ·2si

for i > 1. So, the number ofmasters and their slaves at phase i is not smaller than c
2 ·sicixi.

Observe that ci = c
2i−1 , c

2 · c1x1s1 = cn, and ci+1xi+1si+1 = ci

2 · xi

2si
· ci

2 si2si =
c

2i+1 cixisi. Thus ci+1xi+1si+1 = (c1x1s1) · c
23 · c

24 · . . . · c
2i+1 = cn · ci−1

2(i+1)i/2 ≥
(c′)i2n for a constant c′. So, for i = Θ(log∗ n), there are at least (c′)Θ((log∗ n)2)n =
Ω

(
n

log log n

)
stations that participate in phase i, for every n large enough. It means that

the algorithm initializes Ω
(

n
log log n

)
stations, i.e. labels them uniquely with 1, 2, . . ..

By Lemma 1, at least a linear fraction of stations are assigned in Phase 1 unique ID’s
from the set 1, . . . , 3n. In Phase 2 we run the algorithm just described and we get a set
of stations I labeled uniquely by numbers 1, 2, . . . , |I| such that |I| = Ω( n

log log n ).

Phase 3. Paper [12] presents an algorithm for the strong RN that initializes n stations in
timeO(n)with energy costO(log log n) and probability at least 1−1/n. It can be easily
applied to the case when the approximation of the number of stations up to a constant
multiplicative factor is given. Let I be the set of stations that obtained consecutive ID’s
during the renumeration, |I| = Ω( n

log log n )with high probability. In Phase 3we simulate
the initialization algorithm from [12] using partial initialization trick (the elements of
I with ID’s 1, . . . ,min(|I|, n/2) play a role of the first group and all other elements
belong to the second group).

Recall that the initialization algorithm [12] works in time O(n) and has energy cost
O(log log n). So one can easily check that our algorithm for the weak model works in
time O(n) and energy O(log log n), too.
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7 General Simulation

An algorithm for the strong RN can be simulated on a weak RN as follows: first we run
initialization procedure as described in Section 6. Then we run the algorithm based on
the partial initialization trick from Section 5: the stations 1, . . . , n/2 are responsible for
simulating the stations of the strong RN, station i simulating stations 2i− 1 and 2i, the
stations n/2 + 1, . . . , n are used as the first group for the trick described in Section 5.
Simulation of a step j of the strong RN looks as follows: a station simulating stations
2i − 1 and 2i of the strong RN sends the bit 0 when both these stations send, does not
send anything if neither 2i− 1 nor 2i send and send the bit 1 followed by the message
sent by the station 2i or 2i−1 otherwise. Station n/2+j listens at this step. If it receives
the bit 1 followed by a message then it sends the message received at the next step, and
these stations among 1, . . . , n/2 listen, which represent the awake stations of the strong
RN.
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