
.NET as a Platform for Implementing
Concurrent Objects

Antonio J. Nebro, Enrique Alba, Francisco Luna, José M. Troya

Departamento de Lenguajes y Ciencias de la Computación
Universidad de Málaga (SPAIN)
antonio,eat,troya@lcc.uma.es

Abstract. JACO is a Java-based runtime system designed to study
techniques for implementing concurrent objects in distributed systems.
The use of Java has allowed us to build a system that permits to combine
heterogeneous networks of workstations and multiprocessors as a unique
metacomputing system. An alternative to Java is Microsoft’s .NET plat-
form, that offers a software layer to execute programs written in different
languages, including Java and C#, a new language specifically designed
to exploit the full advantages of .NET. In this paper, we present our
experiences in porting JACO to .NET. Our goal is to analyze how Java
parallel code can be re-used in .NET. We study two alternatives. The
first one is to use J#, the implementation of Java offered by .NET. The
second one is to rewrite the Java code in C#, using the native .NET ser-
vices. We conclude that porting JACO from Java to C# is not difficult,
and that our sequential programs run faster in .NET than in Java, while
internode communications have a higher cost in .NET.

1 Introduction

Concurrent object-oriented languages are characterized by combining concur-
rent programming and object-oriented programming. However, there is not a
unique way to combine these two paradigms [1]. An alternative is to consider
programs as collections of concurrent objects that communicate and synchronize
by invoking the operations they define in their interfaces.

In the past, we have investigated implementing concurrent objects in parallel
and distributed systems [2][3] in an efficient way. As a result, we have developed
JACO, a runtime implemented in Java. With JACO (JAva based Concurrent
Object System), we can use Java to write programs according to a concurrent
object model. JACO offers services to concurrent object creation, object com-
munication, and object replication plus migration.

The choice of Java to implement JACO is justified by the suitability of some
Java features, such as object-orientation, multithreading support, socket based
communication, heterogeneity, reflexion, and XML support. These features can
be also found in the new language C# [4], which is implemented on top of Mi-
crosoft’s .NET platform [5]. The resulting runtime system allows to combine



heterogeneous networks of workstations and multiprocessors as a unique meta-
computing system. Both together, .NET and C#, appear as an alternative to
Java. One of the most interesting features of .NET is that it is a multi-language
platform. Whereas the Java Virtual Machine is bounded to only one language,
the .NET runtime allows to execute programs written in C++, Visual Basic,
C#, and even Java. The Java implementation on .NET is called J#, although it
only provides the functionality of certain JDK classes, while some features, such
as applets or RMI, are not supported. A drawback of .NET is that it is bound
only to the Windows family of operating systems, although there are currently
some initiatives to port .NET to other platforms [6]. Given that C# is similar
to Java in many aspects, it is interesting to study whether parallels programs
written in Java can be ported easily to this new environment. Furthermore, the
availability of J# should allow us to execute Java programs directly on .NET.

In this paper, we present our experiences in porting JACO to .NET. We
have developed a C# version of JACO, which is named JACOC#. The original
Java version will be referred as JACOJ . After recompiling JACOJ using J#,
we have got a version named JACOJ#.

The paper is organized as follows. In Section 2, we give an overview of the
JACO runtime system. In Section 3, we compare the implementation of JACO
in Java, J# and C#. In Section 4, we present results from preliminary experi-
ments. Finally, we provide some conclusions in Section 5.

2 The JACO Runtime System

The object model assumed by JACO considers a concurrent object as an ac-
tive entity, with an internal state and a public interface. Objects can also have
synchronization constraints, which disable some operations when they are not
allowed. There are two kinds of operations: commands, which are asynchronous
operations, and queries, which are read-only synchronous operations. To ensure
that a number of operations are executed in mutual exclusion, objects need to
be acquired in shared or exclusive mode before being accessed.

Internally, JACO runs a process by node, containing the runtime system
and the concurrent objects. The main components of the system are the object
table, the object scheduler, and a communication agent for controlling internode
communication. The JACO scheduler manages a pool of threads, and its mis-
sion is to assign an object ready to run to a thread. The object table contains
references to object handlers, which are proxies used to access JACO objects.

3 Java versus .NET Implementations

In this section, we compare the three implementations of JACO. We begin with
the description of JACOJ , and later we discuss JACOJ# and JACOC#.

As discussed in last section, JACOJ uses threads to execute objets. Inter-
node communication is carried out using TCP sockets. Each concurrent object
in JACOJ has an object identifier, which is a data structure containing an



identifier of the Java class of the object, among other information. Thus, given
an object identifier, the runtime can create an instance of the object handler
using the Java’s reflexion mechanism. JACOJ uses configuration files which
contain network information. These are XML files, which are processed using
the JAXP API of Java. Apart from these features, JACOJ programs are pure
Java programs. We do not use graphics, applets, nor RMI.

The simplest way to port JACOJ to .NET is to use J#. In theory, we only
have to recompile the Java code with the J# compiler. However, J# does not im-
plement the JAXP API for XML processing, because this functionality is offered
by the underlying .NET platform. So, a solution is to use the .NET XML services
from J#. For this work, we took the simple approach of removing the XML code
and including the information contained in the configuration files as constants
objects in header files. After removing the XML code, JACOJ# compiled with-
out problems. When running some JACO applications (see Section 4), we found
some problems. For example, the Java random objects (java.util.Random) did
not work well in J#, but they can be due to the fact that we have used a beta
version of J# (Visual J# .NET Beta 1). Anyway, the problem was solved easily
by invoking the equivalent service (System.Random) offered by .NET.

The implementation of JACO in C#, as well as the applications developed
on top of it, required to rewrite all the Java code in C#. Syntactically, the two
languages are similar: their object-orientation model is basically the same, and
the .NET services to manage threads, sockets, XML, and object serialization are
almost equivalent in C# and Java. Furthermore, we were able of maintaining the
same package structure of the original Java code, by simply replacing packages
by namespaces, so the translation was not a complicated task.

4 Performance Comparison

In this section, we present a performance comparison of the three JACO im-
plementations. The experiments we have carried out must be considered as pre-
liminary ones, because we have used a beta version of .NET. Nevertheless, the
results obtained show the current differences between Java and .NET, and they
can give us an insight of what we can expect from the upcoming releases of
.NET.

To measure performance, we have computed the cost of invoking object oper-
ations and analyzed two distributed applications, a branch and bound algorithm
and a genetic algorithm [7]. The experiments were executed on a network of 6
PCs, each one having an Intel Pentium III 550MHz processor, 128MB of real
memory, and a Fast Ethernet 100 Mbps adapter. They run Windows 2000 (SP2).
We have used JDK 1.3.1-b24, and the Java programs were compiled with the
-O optimization flag. The J# programs were compiled using Visual J# .NET
Beta 1, on top of Visual Studio .NET Beta 2. We run the release version of J#
programs on top of the CLR V1.0.2914. Finally, we compiled and run the C#
programs using the Framework SDK .NET, CLR V1.0.3705. C# programs were
compiled using the /o optimization flag.



Table 1. Costs of local and remote object communication (in ms)

JACO version Java J# C#
Local Remote Local Remote Local Remote

Command 0.007 3.6 0.005 40.3 0.005 13.3
Query 0.209 11.7 0.076 89.2 0.256 29.2

Table 2. Times (in sec) and speed-ups obtained with the branch and bound program

JACO version Java J# C#

Sequential 756 722 737
Distributed (6 nodes) 134 384 202
Speed-up 5.6 1.8 3.6

Let us begin by measuring basic communication costs in JACO. In Table 1
we include the cost of invoking a command and a query operation on a concurrent
double object. In the case of local communication, we observe that commands
take a similar time, while queries in Java perform slightly better than in C#,
but roughly tree times worst than in J#. However, remote communications in
Java are significantly better.

In Table 2 we report the times and speed-ups obtained when running the dis-
tributed branch and bound algorithm to solve a 100-city instance of the Traveling
Saleman Problem. This algorithm is characterized by a high degree of commu-
nication, needed to enhance the load balancing. The execution of the sequential
program shows that the three versions yield comparable times, being faster the
J# version. The speed-ups obtained in the parallel executions using 6 nodes are
the consequence of the high cost of remote communication in J# and C#, which
work out 1.8 and 3.6, respectively, while the speed-up in Java is 5.6.

The second application is a distributed genetic algorithm (DGA) that tries
to optimize the following ONEMAX function: fONEMAX(x) =

∑n
i=1 xi. This

algorithm is the JACO version of the one used in [8], which was implemented
in Java using sockets and threads. The DGA program is characterized by a low
computation/communication ratio, and its results are strongly dependent of the
random number generator, because it uses stochastic operators. In Table 3 we
report the results of running each version of the program on our 6 node network.
Here, the execution time does not provide a complete measure of performance,
because we observed that the optimum was found rapidly by the Java version,
while it was hard to find with the J# and C# versions. Considering that the

Table 3. Results obtained with the distributed genetic algorithm

JACO version Java J# C#
Local Distributed Local Distributed Local Distributed

Time (in ms) 74.02 13.27 158.90 66.91 153.00 19.46
Evaluations 2,451 14,557 3,066 11,075 5,421 29,942



DGA is exactly the same in all the tests, the explanation has to do with the
random number generator of .NET. However, an insight of performance can be
obtained if we analyze the mean number of evaluations per second of the three
programs: the C# version is roughly twice faster than the Java and J# versions.

5 Conclusions

In this paper we have presented our experiences in porting JACO, a Java-based
runtime system for implementing concurrent objects, to .NET. We have used
two .NET languages, J# and C#. We can conclude that Java parallel programs
that use standard mechanisms, such as threads and sockets, can compile and run
on .NET using J# with few problems, and that the similarities between Java
and C# allow to rewrite Java programs in C# with little effort.

Preliminary performance results show that our .NET-based programs per-
form slightly better than the Java versions of the same programs in sequential
execution, while there is a significant advantage for Java concerning remote
communications. However, our tests using C# reveal a reduction in the com-
munication time when comparing with the same tests using J#. Since C# pro-
grams use a more recent version of the Framework SDK .NET than J# programs
(V.1.0.3705 versus V.1.0.2914), we can conclude that this issue is being improved
by Microsoft. Despite C# and J# run over .NET, there are differences in the
execution time of the programs. This can be due to the fact that the compilers
are different, and probably they do not generate the same code.

.NET is recent, while Java JDK has been continuously improved for many
years, so we can expect that future releases of .NET will allow distributed pro-
grams to run efficiently. A more exhaustive evaluation of JACO, including more
applications on top of Java and .NET is a matter of future work.

References

1. Philippsen, M.: A survey of concurrent object-oriented languages. Concurrency:
Practice and Experience 12 (2000) 917–980

2. Nebro, A.J., Pimentel, E., Troya, J.M.: Distributed objects: An approach based on
replication and migration. The Journal of Object-Oriented Programming (JOOP)
12 (1999) 22–27

3. Nebro, A.J., Pimentel, E., Troya, J.M.: Integrating an entry consistency memory
model and concurrent object-oriented programming. In: Third International Euro-
Par Conference. (1997) Passau, Alemania.

4. Liberty, J.: Programming C#. O’Reilly (2001)
5. Platt, D.S., Ballinger, K.: Introducing Microsoft .NET. Microsoft Press (2001)
6. de Icaza, M.: The Mono Project: An Overview (2001)

http://www.ximian.com/devzone/tech/mono.html.
7. UEA Calma Group: Parallelism in combinatorial optimisation. Technical report,

School of Information Systems, University of East Anglia, Norwich, UK (1995)
8. Alba, E., Nebro, A.J., Troya, J.M.: Heterogeneous computing and parallel genetic

algorithms. Accepted for publication in the Journal of Parallel and Distributed
Computing (2002)


