Extended Overhead Analysis for OpenMP

Michael K. Bane and Graham D. Riley

Centre for Novel Computing,
Department of Computer Science,
University of Manchester,
Oxford Road,
Manchester, UK
{bane, griley}@cs.man.ac.uk

Abstract. In this paper we extend current models of overhead analy-
sis to include complex OpenMP structures, leading to clearer and more
appropriate definitions.

1 Introduction

Overhead analysis is a methodology used to compare achieved parallel perfor-
mance to the ideal parallel performance of a reference (usually sequential) code.
It can be considered as an extended view of Amdahl’s Law [I]:

s p-—1

T, ==+
Poop p

(1—a)Ts (1)

where Ty and T, are the times spent by a serial and parallel implementation
of a given algorithm on p threads, and a is a measure of the fraction of par-
allelized code. The first term is the time for an ideal parallel implementation.
The second term can be considered as an overhead due to unparallelized code,
degrading the performance. However, other factors affect performance, such as
the implementation of the parallel code and the effect of different data access
patterns. We therefore consider ([[J) to be a specific form of

T,
T, = ;+ZOZ« (2)

where each O; is an overhead. Much work has been done on the classification
and practical use of overheads of parallel programs eg ([2], [3], [4], [A]).

A hierarchical breakdown of temporal overheads is given in [3]. The top level
overheads are information movement, critical path, parallelism management,
and additional computation. The critical path overheads are due to imperfect
parallelization. Typical components will be load imbalance, replicated work and
insufficient parallelism such as unparallelized or partially parallelized code. We
extend the breakdown of overheads with an “unidentified overheads” category
that includes those overheads that have not yet been, or cannot be, determined
during the analysis of a particular experiment. It is possible for an overhead

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 162-[166]
© Springer-Verlag Berlin Heidelberg 2002

Extended Overhead Analysis for OpenMP 163

to be negative and thus relate to an improvement in the parallel performance.
For example, for a parallel implementation the data may fit into a processor’s
memory cache whereas it does not for the serial implementation. In such a case,
the overhead due to data accesses would be negative.

The practical process of quantifying overheads is typically a refinement pro-
cess. The main point is not to obtain high accuracy for all categories of overheads,
but to optimize the parallel implementation.

Overhead analysis may be applied to the whole code or to a particular region
of interest.

2 Overhead Analysis Applied to OpenMP

This paper argues that the current formalization of overhead analysis as applied
to OpenMP [@] is overly simplistic, and suggests an improved scheme.

Consider two simple examples to illustrate the definition and measurement
of an overhead. A simple OMP PARALLEL DO loop may lead to load imbalance
overhead, defined as the difference between the time taken by the slowest thread
and the average thread time. The definition of the Load Imbalance overhead in
[B] is given as

Load imbalance: time spent waiting at a synchronization point, because,
although there are sufficient parallel tasks, they are asymmetric in the time taken
to execute them.

We now turn our attention to the simplest case of unparallelized code over-
head, where only one thread executes code in a given parallel region — for exam-
ple, an OMP PARALLEL construct consisting solely of an OMP SINGLE construct.
From [3] we have the following definitions:

Insufficient parallelism: processors are idle because there is an insufficient
number of parallel tasks available for execution at that stage of the program;
with subdivisions:

Unparallelized code: time spent waiting in sections of code where there is
a single task, run on a single processor;

Partially parallelized code: time spent waiting in sections of code where
there is more than one task, but not enough to keep all processors active.

For the above examples we have a synchronization point at the start and end
of the region of interest, and only one construct within the region of interest.
However, analysis of such examples is of limited use. OpenMP allows the creation
of a parallel region in which there can be a variety of OpenMP constructs as
well as replicated code that is executed by the team of threads []. The number of
threads executing may also depend on program flow; in particular when control
is determined by reference to the value of the function OMP_GET_THREAD_NUM,

1 OpenMP allows for differing numbers of threads for different parallel regions, ei-
ther determined by the system or explicitly by the user. In this paper, we assume
that there are p threads running for each and every parallel region. Cases where
there a different number of threads for a parallel region is beyond the scope of this
introductory paper.

164 M.K. Bane and G.D. Riley

which returns the thread number. Various OpenMP constructs can also not
have an implicit barrier at the exit point (for example, OMP END DO NOWAIT).
Thus a given OpenMP parallel region can be quite sophisticated leading to
several different overheads within a region which may interfere constructively
or destructively. The remainder of this paper discusses appropriate overhead
analysis for non-trivial OpenMP programs.

Let us now consider an OpenMP parallel region consisting of a SINGLE region
followed by a distributed DO loop:

C$0MP PARALLEL PRIVATE(I)
C$0OMP SINGLE

CALL SINGLE_WORK()
C$OMP END SINGLE NOWAIT
C$0OMP DO SCHEDULE (DYNAMIC)

DO I=1, N
CALL DO_WORK()
END DO

C$0OMP END DO
C$0MP END PARALLEL

Since the SINGLE region does not have a barrier at the exit point, those
threads not executing SINGLE WORK() will start DO_WORK() immediately. We
could therefore have a situation shown in Figure [l where the double line repre-
sents the time spent in SINGLE_WORK (), the single line the time spent in DO_WORK
and the dashed line being thread idle time. One interpretation of the above

Fig. 1. Time Graph for Complex Example #1

definitions would be that this example has an element of unparallelized code
overhead.

Depending upon the amount of time it takes to perform SINGLE_WORK() it is
possible to achieve ideal speed up for such an example, despite a proportion of
code being executed on only one thread, which would normally imply unparal-
lelized code overhead.

Extended Overhead Analysis for OpenMP 165

Assume the time spent on one thread is ¢y, for SINGLE_WORK () and t4, for
DO_WORK () then for this region the sequential time T = t4ing +tqo and the ideal
time on p threads is thus Tjgeqr = % = % During the time that one
thread has spent in the SINGLE region a total of (p — 1) ts;n, seconds have been
allocated to DO_WORK(). There is therefore tq, — (p — 1) t5ing seconds worth of

work left to do, now over p threads. So, the actual time taken is

t o -1 tsin
Ty = tsing + max (0, do — (P) g) (3)
p

Thus either the work in the SINGLE region dominates (all the other threads
finish first), or there is sufficient work for those threads executing DO_WORK ()
compared to SINGLE_.WORK() in which case @) reduces to T, = Tjgeq:- That
is, we may achieve a perfect parallel implementation despite the presence of a
SINGLE region; perfection is not guaranteed, depending on the size of the work
quanta in DO_WORK.

Therefore, we can see that the determination of overheads needs to take into
account interactions between OpenMP constructs in the region in question.

Consider a slight variation to the above case, where an OpenMP parallel
region contains just an OMP SINGLE construct and an OMP DO loop without an exit
barrier (ie OMP END DO NOWAIT is present). As long as the work is independent,
we can write such a code in two different orders, one with the SINGLE construct
followed by the DO loop and the other in the opposite order.

At first glance, one might be tempted to define the overheads in terms of
that OpenMP construct which leads to lost cycles immediately before the final
synchronization point. Thus overhead in the first case would be mainly load
imbalance with an unparallelized overhead contribution, and in the second case,
mainly unparallelized overhead with a load imbalance overhead contribution.

Given such “commutability” of overheads, together with the previous exam-
ples, it is obvious we need a clearer definition of overheads.

3 An Improved Schema

We now give a new, extended schema for defining overheads for real life OpenMP
programs where we assume that the run time environment allocates the requested
number of threads, p, for each and every parallel region.

1. Overheads can be defined only between two synchronization points. Over-
heads for a larger region will be the sum of overheads between each consec-
utive pair of synchronization points in that region.

2. Overheads exist only if the time taken between two synchronization points
by the parallel implementation on p threads, T}, is greater than the ideal
time, Tideal~

3. Unparallelized overhead is the time spent between two consecutive synchro-
nization points of the parallel implementation when only one thread is exe-
cuting.

166 M.K. Bane and G.D. Riley

4. Partially parallelized overhead is the time spent between two synchronization
points when the number of threads being used throughout this region, p’, is
given by 1 < p’ < p. This would occur, for example, in an OMP PARALLEL
SECTIONS construct where there are less SECTIONs than threads.

5. Replicated work overhead occurs between two synchronization points when
members of the thread team are executing the same instructions on the same
data in the same order.

6. Load imbalance overhead is the time spent waiting at the exit synchroniza-
tion point when the same number of threads, p” > 1, execute code between
the synchronization points, irrespective of the cause(s) of the imbalance. In
the case p” < p, we can compute load imbalance overhead with respect to p”
threads and partially parallelized overhead with respect to p — p” threads.

In computing overheads for a synchronization region, point (2)) should be con-
sidered first. That is, if there is ideal speed up, there is no need to compute
other overheads — ideal speed up being the “goal”’. There may, of course, by
some negative overheads which balance the positive overheads but this situation
is tolerated because the speed up is acceptable.

4 Conclusions and Future Work

In this paper we have outlined an extension to the current analysis of overheads,
as applied to OpenMP. Our future work will involve expanding the prototype
Ovaltine [5] tool to include these extensions, and an in-depth consideration of
cases where different parallel regions have different numbers of threads, either
as a result of dynamic scheduling or at the request of the programmer.

References

1. G.M. Amdahl, Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities, AFIPS Conference Proceedings, vol. 30, AFIPS Press, pp.
483-485, 1967.

2. M.E. Crovella and T.J. LeBlanc, Parallel Performance Prediction Using Lost Cycles
Analysis, Proceedings of Supercomputing ’94, IEEE Computer Society, pp. 600-609,
November 1994.

3. J.M. Bull. A Hierarchical Classification of Overheads in Parallel Programs, Pro-
ceedings of First IFIP TC10 International Workshop on Software Engineering for
Parallel and Distributed Systems, I. Jelly, I. Gorton and P. Croll (Ed.s), Chapman
Hall, pp. 208-219, March 1996.

4. G.D. Riley, J.M. Bull and J.R. Gurd, Performance Improvement Through Overhead
Analysis: A Case Study in Molecular Dynamics, Proc. 11* ACM International Con-
ference on Supercomputing, ACM Press, pp. 36-43, July 1997.

5. M.K. Bane and G.D. Riley, Automatic Overheads Profiler for OpenMP Codes, Pro-
ceedings of the Second European Workshop on OpenMP (EWOMP2000), September
2000.

6. http://www.openmp.org/specs/

	1 Introduction
	2 Overhead Analysis Applied to OpenMP
	3 An Improved Schema
	4 Conclusions and Future Work
	References

