
Job Scheduling for the BlueGene/L System

Elie Krevat1, José G. Castaños2, and José E. Moreira2

1 Massachusetts Institute of Technology, Cambridge, MA 02139-4307
krevat@mit.edu

2 IBM T. J. Watson Research Center, Yorktown Heights, NY 10598-0218
{castanos,jmoreira}@us.ibm.com

Abstract. Cellular architectures with a toroidal interconnect are effective at pro-
ducing highly scalable computing systems, but typically require job partitions to
be both rectangular and contiguous. These restrictions introduce fragmentation is-
sueswhich reduce systemutilizationwhile increasing jobwait time and slowdown.
We propose to solve these problems for the BlueGene/L system through schedul-
ing algorithms that augment a baseline first come first serve (FCFS) scheduler.
Our analysis of simulation results shows that migration and backfilling techniques
lead to better system performance.

1 Introduction

BlueGene/L (BG/L) is a massively parallel cellular architecture system. 65,536 self-
contained computing nodes, or cells, are interconnected in a three-dimensional toroidal
pattern [7]. While toroidal interconnects are simple, modular, and scalable, we cannot
view the system as a flat, fully-connected network of nodes that are equidistant to each
other. In most toroidal systems, job partitions must be both rectangular (in a multidi-
mensional sense) and contiguous. It has been shown in the literature [3] that, because
of these restrictions, significant machine fragmentation occurs in a toroidal system. The
fragmentation results in low system utilization and high wait time for queued jobs.

In this paper, we analyze a set of scheduling techniques to improve system utilization
and reduce wait time of jobs for the BG/L system.We analyze two techniques previously
discussed in the literature, backfilling [4,5,6] and migration [1,8], in the context of
a toroidal-interconnected system. Backfilling is a technique that moves lower priority
jobs ahead of other higher priority jobs, as long as execution of the higher priority jobs is
not delayed. Migration moves jobs around the toroidal machine, performing on-the-fly
defragmentation to create larger contiguous free space for waiting jobs.

We conduct a simulation-based study of the impact of those techniques on the system
performance of BG/L. We find that migration can improve maximum system utilization,
while enforcing a strict FCFS policy. We also find that backfilling, which bypasses the
FCFS order, can lead to even higher utilization and lower wait times. Finally, we show
that there is a small benefit from combining backfilling and migration.

2 Scheduling Algorithms

This section describes four job scheduling algorithms that we evaluate in the context
of BG/L. In all algorithms, arriving jobs are first placed in a queue of waiting jobs,

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 207–211.
c© Springer-Verlag Berlin Heidelberg 2002

208 E. Krevat, J.G. Castaños, and J.E. Moreira

prioritized according to the order of arrival. The scheduler is invoked for every job
arrival and job termination event, and attempts to schedule new jobs for execution.

First Come First Serve (FCFS). For FCFS, we adopt the heuristic of traversing the
waiting queue in order and scheduling each job in a way that maximizes the largest free
rectangular partition left in the torus. If we cannot fit a job of size p in the system, we
artificially increase its size and retry. We stop when we find the first job in the queue that
cannot be scheduled.

FCFS With Backfilling. Backfilling allows a lower priority job j to be scheduled before
a higher priority job i as long as this reschedule does not delay the estimated start time of
job i. Backfilling increases system utilization without job starvation [4,9]. It requires an
estimation of job execution time. Backfilling is invoked when FCFS stops because a job
does not fit in the torus and there are additional jobs in the waiting queue. A reservation
time for the highest-priority job is then calculated, based on the worst case execution
time of jobs currently running. If there are additional jobs in the waiting queue, a job is
scheduled out of order as long as it does not prevent the first job in the queue from being
scheduled at the reservation time.

FCFSWith Migration. The migration algorithm rearranges the running jobs in the torus
in order to increase the size of the maximal contiguous rectangular free partition, coun-
teracting the effects of fragmentation. The migration process is undertaken immediately
after the FCFS phase fails to schedule a job in the waiting queue. Running jobs are
organized in a queue of migrating jobs sorted by size, from largest to smallest. Each job
is then reassigned a new partition, using the same algorithm as FCFS and starting with
an empty torus. After migration, FCFS is performed again in an attempt to start more
jobs in the rearranged torus.

FCFS with Backfilling and Migration. Since backfilling and migration are independent
scheduling concepts, an FCFS scheduler may implement both of these functions. First,
we schedule as many jobs as possible via FCFS. Next, we rearrange the torus through
migration to minimize fragmentation, and then repeat FCFS. Finally, the backfilling
algorithm from Scheduler 2 is performed.

3 Experiments

We used an event-driven simulator to process actual job logs of supercomputing centers.
The results of simulations for all four schedulers were then studied to determine the
impact of their respective algorithms. The BG/L system is organized as a 32 × 32 × 64
three-dimensional torus of nodes (cells). The unit of allocation for job execution in
BG/L is a 512-node ensemble organized in an 8× 8× 8 configuration. Therefore, BG/L
behaves as a 4 × 4 × 8 torus of these supernodes. We use this supernode abstraction
when performing job scheduling for BG/L. That is, we treat BG/L as a machine with
128 (super)nodes.

A job log contains information on the arrival time, execution time, and size of all
jobs. Given a torus of size N , and for each job j the arrival time taj , execution time tej
and size sj , the simulation produces values for the start time tsj and finish time tfj of each
job. These results were analyzed to determine the following parameters for each job: (1)

Job Scheduling for the BlueGene/L System 209

wait time twj = tsj − taj , (2) response time trj = tfj − taj , and (3) bounded slowdown

tbs
j = max (tr

j ,Γ)
max(te

j
,Γ) forΓ = 10 s. TheΓ term appears according to recommendations in [4],

because jobs with very short execution time may distort the slowdown.
Global system statistics are also determined. Let the simulation time span be T =

max∀j (tfj)−min∀k (tak).We then define systemutilization (also called capacity utilized)

as wutil =
∑

∀j

sjte
j

TN . Similarly, let f(t) denote the number of free nodes in the torus at
time t and q(t) denote the total number of nodes requested by jobs in the waiting queue
at time t. Then, the total amount of unused capacity in the system, wunused, is defined

as wunused =
∫ max (tf

j
)

min (ta
j
) max (0, f(t) − q(t))dt. This parameter is a measure of the work

unused by the system because there is a lack of jobs requesting free nodes. The balance
of the system capacity is lost despite the presence of jobs that could have used it. The
lost capacity in the system is then derived as wlost = 1 − wutil − wunused.

We performed experiments on 10,000-job segments of two job logs obtained from the
Parallel Workloads Archive [2]. The first log is from NASA Ames’s 128-node iPSC/860
machine (from the year 1993). The second log is from the San Diego Supercomputer
Center’s (SDSC) 128-node IBM RS/6000 SP (from the years 1998-2000). In the NASA
log, job sizes are always powers of 2. In the SDSC log, job sizes are arbitrary. Using
these two logs as a basis, we generated logs of varying workloads by multiplying the
execution time of each job by a constant coefficient.

Figure 1 presents a plot of average job bounded slowdown (tbs
j)× system utilization

(wutil) for each of the four schedulers considered and each of the two job logs. (B+M is
the backfilling andmigration scheduler.)We also include results from the simulation of a
fully-connected (flat) network. This allows us to assess how effective the schedulers are
in overcoming the difficulties imposed by a toroidal interconnect. The overall shapes of
the curves for wait time are similar to those for bounded slowdown. The most significant
performance improvement is attained through backfilling, for both the NASA and SDSC
logs. Also, for both logs, there is a certain benefit from migration, whether combined
with backfilling or not.

With the NASA log, all four schedulers provide similar average job bounded slow-
down for utilizations up to 65%. The FCFS and Migration schedulers saturate at about
77% and 80% utilization respectively. Backfilling (with or without migration) allows
utilizations above 80% with a bounded slowdown of less than a hundred. We note that
migration provides only a small improvement in bounded slowdown for most of the
utilization range. In the NASA log, all jobs are of sizes that are powers of 2, which
results in a good packing of the torus. Therefore, the benefits of migration are limited.

With the SDSC log, the FCFS scheduler saturates at 63%, while the stand-alone
Migration scheduler saturates at 73%. In this log, with jobs of more varied sizes, frag-
mentation occurs more frequently. Therefore, migration has a much bigger impact on
FCFS, significantly improving the range of utilizations at which the system can operate.
However, we note that when backfilling is used there is again only a small benefit from
migration, more noticeable for utilizations between 75 and 85%.

Migration by itself cannot make the results for a toroidal machine as good as those
for a flat machine. For the SDSC log, in particular, a flat machine can achieve better than
80% utilization with just the FCFS scheduler. However, the backfilling results are closer

210 E. Krevat, J.G. Castaños, and J.E. Moreira

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

50

100

150

200

250

300

350

400
Mean job bounded slowdown vs Utilization

M
ea

n
jo

b
bo

un
de

d
sl

ow
do

w
n

Utilization

FCFS
Backfill
Migration
B+M
Flat FCFS
Flat Backfill

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

50

100

150

200

250

300

350

400
Mean job bounded slowdown vs Utilization

M
ea

n
jo

b
bo

un
de

d
sl

ow
do

w
n

Utilization

FCFS
Backfill
Migration
B+M
Flat FCFS
Flat Backfill

(a) NASA iPSC/860 (b) SDSC RS/6000 SP

Fig. 1. Mean job bounded slowdown vs utilization for the NASA and SDSC logs, comparing
toroidal and flat machines.

FCFS Backfilling Migration B+M
0

0.2

0.4

0.6

0.8

1

System capacity statistics − baseline workload

Scheduler type

F
ra

ct
io

n
of

 to
ta

l s
ys

te
m

 c
ap

ac
ity

Capacity unused
Capacity lost
Capacity utilized

FCFS Backfilling Migration B+M
0

0.2

0.4

0.6

0.8

1

System capacity statistics − baseline workload

Scheduler type

F
ra

ct
io

n
of

 to
ta

l s
ys

te
m

 c
ap

ac
ity

Capacity unused
Capacity lost
Capacity utilized

(a) NASA iPSC/860 (b) SDSC RS/6000 SP

Fig. 2. Capacity utilized, lost, and unused as a fraction of the total system capacity.

to each other. For the NASA log, results for backfilling with migration in the toroidal
machine are just as good as the backfilling results in the flat machine. For the SDSC
log, backfilling on a flat machine does provide significantly better results for utilizations
above 85%.

The results of system capacity utilized, unused capacity, and lost capacity for each
scheduler type and both job logs (scaling coefficient of 1.0) are plotted in Figure 2. The
utilization improvements for theNASA log are barely noticeable – again, because its jobs
fill the torus more compactly. The SDSC log, however, shows the greatest improvement
when usingB+Mover FCFS,with a 15% increase in capacity utilized and a 54%decrease
in the amount of capacity lost. By themselves, theBackfill andMigration schedulers each
increase capacity utilization by 15% and 13%, respectively, while decreasing capacity
loss by 44% and 32%, respectively. These results show that B+M is significantly more
effective at transforming lost capacity into unused capacity.

4 Related and Future Work

The topics of ourwork have been the subject of extensive previous research. In particular,
[4,5,6] have shown that backfilling on a flat machine like the IBM RS/6000 SP is an

Job Scheduling for the BlueGene/L System 211

effectivemeans of improving quality of service. The benefits of combiningmigration and
gang-scheduling have been demonstrated both for fully connected machines [10] and
toroidal machines like the Cray T3D [3]. This paper applies a combination of backfilling
and migration algorithms, exclusively through space-sharing techniques, to improve
system performance on a toroidal-interconnected system. As future work, we plan to
study the impact of different FCFS scheduling heuristics for a torus. We also want to
investigate time-sharing features enabled by preemption.

5 Conclusions

We have investigated the behavior of various scheduling algorithms to determine their
ability to increase processor utilization and decrease job wait time in the BG/L system.
We have shown that a scheduler which uses only a backfilling algorithm performs better
than a scheduler which uses only amigration algorithm, and thatmigration is particularly
effective under a workload which produces a large amount of fragmentation. We show
that FCFS scheduling with backfilling and migration shows a slight performance im-
provement over just FCFS and backfilling. Backfilling combinedwithmigration converts
significantly more lost capacity into unused capacity than just backfilling.

References

1. D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne. A worldwide flock
of Condors: Load sharing among workstation clusters. Future Generation Computer
Systems, 12(1):53–65, May 1996.

2. D. G. Feitelson. Parallel Workloads Archive.
http://www.cs.huji.ac.il/labs/parallel/workload/index.html.

3. D. G. Feitelson and M. A. Jette. Improved Utilization and Responsiveness with Gang
Scheduling. In IPPS’97 Workshop on Job Scheduling Strategies for Parallel Processing,
volume 1291 of Lecture Notes in Computer Science, pages 238–261. Springer-Verlag, 1997.

4. D. G. Feitelson and A. M. Weil. Utilization and predictability in scheduling the IBM SP2
with backfilling. In 12th International Parallel Processing Symposium, April 1998.

5. D. Lifka. The ANL/IBM SP scheduling system. In IPPS’95 Workshop on Job Scheduling
Strategies for Parallel Processing, volume 949 of Lecture Notes in Computer Science, pages
295–303. Springer-Verlag, April 1995.

6. J. Skovira, W. Chan, H. Zhou, and D. Lifka. The EASY-LoadLeveler API project. In
IPPS’96 Workshop on Job Scheduling Strategies for Parallel Processing, volume 1162 of
Lecture Notes in Computer Science, pages 41–47. Springer-Verlag, April 1996.

7. H. S. Stone. High-Performance Computer Architecture. Addison-Wesley, 1993.
8. C. Z. Xu and F. C. M. Lau. Load Balancing in Parallel Computers: Theory and Practice.
Kluwer Academic Publishers, Boston, MA, 1996.

9. Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramaniam. Improving Parallel Job
Scheduling by Combining Gang Scheduling and Backfilling Techniques. In Proceedings
of IPDPS 2000, Cancun, Mexico, May 2000.

10. Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramaniam. The Impact of Migration on
Parallel Job Scheduling for Distributed Systems. In Proceedings of the 6th International
Euro-Par Conference, pages 242–251, August 29 - September 1 2000.

	1 Introduction
	2 Scheduling Algorithms
	3 Experiments
	4 Related and Future Work
	5 Conclusions
	References

