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Abstract. The mainstream architecture of a parallel machine with more
than tens of processors is a distributed-memory machine. The bulk syn-
chronous task scheduling problem (BSSP, for short) is an task scheduling
problem for distributed-memory machines. This paper shows that there
does not exist a ρ-approximation algorithm to solve the optimization
counterpart of BSSP for any ρ < 6

5 unless P = NP.

1 Introduction

Existing researches on the task scheduling problem for a distributed-memory
machine (DMM for short) simply model DMMs as the parallel machines with
large communication delays [2,12,13]. In contrast to this, in the papers [4,5,7],
one noticed the following things by both analysis of architectural properties
of DMMs and experiments to execute parallel programs which corresponds to
schedules generated by existing task scheduling algorithms:

– It is essential to task scheduling for a DMM to consider the software overhead
in communication, even if a DMM is equipped with a dedicated communi-
cation co-processor per processor.

– Existing task scheduling algorithms would ignore the software overhead.
– For the above reasons, it is hard for existing algorithms to generate schedules
which become fast parallel programs on a DMM.

To remedy this situation, in the papers [4,5,6,7], one proposed an optimiza-
tion problem named the bulk synchronous task scheduling problem (BSSPO
for short), i.e., the problem of finding a bulk synchronous schedule with small
makespan. Formally, BSSPO is an optimization problem which restricts output,
rather than input, of the general task scheduling problem with communication
delays. A bulk synchronous schedule is a restricted schedule which has the fol-
lowing features:

– The well-known parallel programming technique to reduce the software over-
head significantly , called message aggregation [1], can be applied to the
parallel program which corresponds to the schedule.
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– Makespan of the schedule approximates well the execution time of the par-
allel program applied message aggregation.

Hence a good BSSPO algorithm generates a schedule which becomes a fast
parallel program on a DMM.
In this paper, we consider non-approximability of BSSPO. The decision coun-

terpart of BSSPO (BSSP, for short) is known to be NP-complete even in the
case of unit time tasks and positive integer constant communication delays [6].
For BSSPO, two heuristic algorithms [4,5,7] for the general case and several ap-
proximation algorithms [6] for restricted cases are known. However, no results
are known on non-approximability of BSSPO. This paper shows that there does
not exist a ρ-approximation algorithm to solve BSSPO for any ρ < 6

5 unlessP = NP.
The remainder of this paper is organized as follows. First, we give some

definitions in Section 2. Next, we review a bulk synchronous schedule in Section
3. Then, we prove non-approximability of BSSPO in Section 4. Last, in Section
5, we summarize and conclude the paper.

2 Preliminaries and Notation

A parallel computation is modeled as a task graph [3]. A task graph is rep-
resented by a weighted directed acyclic graph G = (V,E, λ, τ), where V is a
set of nodes, E is a set of directed edges, λ is a function from a node to the
weight of the node, and τ is a function from a directed edge to the weight of
the edge. We write a directed edge from a node u to a node v as (u, v). A node
in a task graph represents a task in the parallel computation. We write a task
represented by a node u as Tu. The value λ(u) means that the execution time
of Tu is λ(u) unit times. An edge (u, v) means that the computation of Tv needs
the result of the computation of Tu. The value τ(u, v) means that interprocessor
communication delay from the processor p which computes Tu to the processor
q which computes Tv is at most τ(u, v) unit times if p is not equal to q. If p and
q are identical, no interprocessor communication delay is needed.
Thurimella gave the definition of a schedule in the case that λ(v) is equal to

a unit time for any v and τ(u, v) is a constant independent of u and v [14]. For
general task graphs, we define a schedule as extension of Thurimella’s definition
as follows. For a given number p of available processors, a schedule S of a
task graph G = (V,E, τ, λ) for p is a finite set of triples 〈v, q, t〉, where v ∈ V ,
q(1 ≤ q ≤ p) is the index of a processor, and t is the starting time of task Tv.
A triple 〈v, q, t〉 ∈ S means that the processor q computes the task Tv between
time t and time t + λ(v). We call t + λ(v) the completion time of the task
Tv. A schedule which satisfies the following three conditions R1 to R3 is called
feasible (In the following of this paper, we abbreviate a feasible schedule as a
schedule.):

R1 For each v ∈ V , there is at least one triple 〈v, q, t〉 ∈ S.
R2 There are no two triples 〈v, q, t〉, 〈v′, q, t′〉 ∈ S with t ≤ t′ ≤ t+ λ(v).
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Fig. 1. An example of a task graph

R3 If (u, v) ∈ E and 〈v, q, t〉 ∈ S, then there exists a triple 〈u, q′, t′〉 ∈ S either
with t′ ≤ t− λ(u) and q = q′, or with t′ ≤ t− λ(u)− τ(u, v) and q �= q′.

Informally, the above rules can be stated as follows. The rule R1 enforces each
task Tv to be executed at least once. The rule R2 says that a processor can
execute at most one task at any given time. The rule R3 states that any task
must receive the required data (if exist) before its starting time. Themakespan
of S is max{t+λ(v)|〈v, q, t〉 ∈ S}. An optimal schedule is a schedule with the
smallest makespan among all the schedules.
A schedule within a factor of α of optimal is called an α-optimal schedule.

A ρ-approximation algorithm is a polynomial-time algorithm that always
finds a ρ-optimal schedule.

3 Review of a Bulk Synchronous Schedule

As shown in Fig. 2, a bulk synchronous schedule is a schedule such that no-
communication phases and communication phases appear alternately (In a gen-
eral case, no-communication phases and communication phases appear repeat-
edly). Informally, a no-communication phase is a set of task instances in a time
interval such that the corresponding program executes computations only. A
communication phase is a time interval such that the corresponding program
executes communications only. A bulk synchronous schedule is similar to BSP
(Bulk Synchronous Parallel) computation proposed by Valiant [15] in that local
computations are separated from global communications. A no-communication
phase corresponds to a super step of BSP computation. In the following, we first
define a no-communication phase and a communication phase. Then, we define
a bulk synchronous schedule using them.
Let S be a schedule of a task graph G = (V,E, λ, τ) for a number p of

available processors. We define the following notation: For S, t1, and t2 with
t1 < t2,

S[t1, t2] = {〈v, q, t〉 ∈ S|t1 ≤ t ≤ t2 − λ(v)}
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Fig. 2. An example of a bulk synchronous schedule

Notation S[t1, t2] represents the set of all the triples such that both the starting
time and the completion time of the task in a triple are between t1 and t2. A
set S[t1, t2] ⊆ S of triples is called a no-communication phase of S iff the
following condition holds.

C1 If (u, v) ∈ E and 〈v, q, t〉 ∈ S[t1, t2], then there exists a triple 〈u, q′, t′〉 ∈ S
either with t′ ≤ t − λ(u) and q = q′, or with t′ ≤ t1 − λ(u) − τ(u, v) and
q �= q′.

The condition C1 means that each processor needs no interprocessor communi-
cation between task instances in S[t1, t2] since all the needed results of tasks are
either computed by itself or received from some processor before t1.
Let S[t1, t2] be a no-communication phase. Let t3 be min{t|〈u, q, t〉 ∈ (S −

S[0, t2])}. Assume that a no-communication phase S[t3, t4] exists for some t4. We
say that S[t1, t2] and S[t3, t4] are consecutive no-communication phases.
We intend that in the execution of the corresponding program each processor
sends the results, which are computed in S[t1, t2] and are required in S[t3, t4],
as packaged messages at t2 and receives all the needed results in S[t3, t4] as
packaged messages at t3. A communication phase between consecutive no-
communication phases is the time interval where each processor executes com-
munications only. To reflect such program’s behavior in the time interval on the
model between consecutive no-communication phases, we assume that the result
of 〈u, q, t〉 ∈ S[t1, t2] is sent at t2 even in case of t+λ(u) < t2 although the model
assumes that the result is always sent at t + λ(u). Let Comm(S, t1, t2, t3, t4)
be {(u, v)|(u, v) ∈ E, 〈u, q, t〉 ∈ S[t1, t2], 〈v, q′, t′〉 ∈ S[t3, t4], 〈u, q′, t′′〉 �∈ S, q �=
q′, t′′ ≤ t′ − λ(u)}. A set Comm(S, t1, t2, t3, t4) of edges corresponds to the set
of all the interprocessor communications between task instances in S[t1, t2] and
task instances in S[t3, t4]. Note that task duplication [8] is considered in the def-
inition of Comm(S, t1, t2, t3, t4). We define the following notation: For C ⊆ E,

τsuff (C) =
{

0 if C = ∅
max{τ(u, v)|(u, v) ∈ C} otherwise
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Consider simultaneous sendings of all the results in C. The value τsuff (C) rep-
resents the elapsed time on the model till all the results are available to any
processor. So, the value τsuff (Comm(S, t1, t2, t3, t4)) represents the minimum
communication delay on the model between the two no-communication phases.
We say S is a bulk synchronous schedule iff S can be partitioned into

a sequence of no-communication phases 〈S[st1, ct1], S[st2, ct2], · · · , S[stm, ctm]〉
(m ≥ 1) which satisfies the following condition C2.
C2 For any i, j (1 ≤ i < j ≤ m), cti + τsuff (Comm(S, sti, cti, stj , ctj)) ≤ stj

Note that C2 considers communications between not only consecutive no-com-
munication phases but also non consecutive ones. Fig. 2 shows an example of a
bulk synchronous schedule 〈S[0, 3], S[5, 9]〉 of the task graph in Fig. 1 for four
processors. The set Comm(S, 0, 3, 5, 9) of edges is {(9, 6), (10, 8), (11, 3)}. The
edge with maximum weight of all the edges in Comm(S, 0, 3, 5, 9) is (11, 3). So,
the weight of the edge (11, 3) decides that τsuff (Comm(S, 0, 3, 5, 9)) is two.

4 A Proof of Non-approximability of BSSP

4.1 An Overview of Our Proof

In this section, we prove that a ρ-approximation algorithm for BSSPO does not
exist for any ρ < 6

5 unless P = NP. For this purpose, we use the following
lemma [11].

Lemma 1. Consider a combinatorial minimization problem for which all feasi-
ble solutions have non-negative integer objective function value. Let k be a fixed
positive integer. Suppose that the problem of deciding if there exists a feasible
solution of value at most k is NP-complete. Then, for any ρ < (k + 1)/k, there
does not exist a ρ-approximation algorithm unless P = NP.

To extract our non-approximability result using Lemma 1, we prove NP-com-
pleteness of BSSP in the case of a given fixed constant communication delay c
and makespan at most 3+2c (3BSSP(c), for short) by reducing to 3BSSP(c) the
unit time precedence constrained scheduling problem in the case of makespan at
most 3 [10] (3SP, for short). These problems are defined as follows:

– 3BSSP(c) where c is a constant communication delay (positive integer).
Instance: A task graph G such that all the weights of nodes are unit and all
the weights of edges are the same as c, a number p of available processors
Question: Is there a bulk synchronous schedule SBSP whose makespan is at
most 3 + 2c ?

– 3SP
Instance: A task graph G such that all the weights of nodes are unit and all
the weights of edges are the same as zero, a number p of available processors
Question: Is there a schedule S whose makespan is at most 3 ?

NP-completeness of 3SP was proved by Lenstra and Rinnooy Kan [10]. In the
following, we denote an instance of 3BSSP(c) (3SP, resp.) as (G, p, c) ((G, p),
resp.).
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Fig. 3. A ladder graph LG(n, c)

4.2 A Ladder Graph and Its Bulk Synchronous Schedule

A ladder graph LG(n, c) is a task graph such that V = {ui,j |1 ≤ i ≤ 3, 1 ≤
j ≤ n}, E = {(ui,j , ui+1,k)|1 ≤ i < 3, 1 ≤ j ≤ n, 1 ≤ k ≤ n}, λ(v) = 1 for any
v ∈ V , and τ(e) = c for any e ∈ E. Fig. 3 shows a ladder graph LG(n, c). Then,
the following lemma follows.

Lemma 2. For any positive integer c, any bulk synchronous schedule for a lad-
der graph LG(3+ 2c, c) onto at least (3+ 2c) processors within deadline (3+ 2c)
consists of three no-communication phases with one unit length.

Proof. Let D be 3+ 2c. Let SBSP be a bulk synchronous schedule for a ladder
graph LG(D, c) onto p (≥ D) processors within deadline D. Any ui+1,j(1 ≤
i < 3, 1 ≤ j ≤ D) cannot construct a no-communication phase with all of
{ui,k|1 ≤ k ≤ D} because the computation time (D + 1) of these nodes on
one processor is greater than the given deadline D. That is, any ui+1,j(1 ≤
i < 3, 1 ≤ j ≤ D) must communicate with at least one of {ui,k|1 ≤ k ≤ D}.
Hence, there exists a sequence {u1,k1 , u2,k2 , u3,k3} of nodes such that ui+1,ki+1

communicates with ui,ki for any i(1 ≤ i < 3). This means that SBSP includes at
least two communication phases. On the other hand, SBSP cannot include more
than two communication phases because the deadline D is broken. Therefore,
SBSP includes just two communication phases. Consequently, SBSP must consist
of just three no-communication phases with one unit length. One of schedules
possible as SBSP is {〈ui,j , j, (i − 1)(c + 1)〉|1 ≤ i ≤ 3, 1 ≤ j ≤ D} (See Fig. 4).

��

4.3 A Polynomial-Time Reduction

Now, we show the reduction from 3SP to 3BSSP(c). Let (G = (VG, EG, λG, τG), p)
be an instance of 3SP. Let c be any positive integer. Let LG(3 + 2c, c) =
(VLG, ELG, λLG, τLG) be a ladder graph. Let G′ be a task graph (VG ∪VLG, EG ∪
ELG, λG′ , τG′) where λG′(v) = 1 for any v ∈ VG ∪ VLG, and τG′(e) = c for any
e ∈ EG ∪ ELG.
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Lemma 3. The transformation from an instance (G, p) of 3SP to an instance
(G′, p + 3 + 2c, c) of 3BSSP(c) is a polynomial transformation such that (G, p)
is a yes instance iff (G′, p+ 3 + 2c, c) is a yes instance.

Proof. If (G, p) is a ”yes” instance of 3SP, then let S be a schedule for (G, p). A
set {〈v, q, t(c+ 1)〉|〈v, q, t〉 ∈ S} ∪ {〈ui,j , p+ j, (i− 1)(c+ 1)〉|1 ≤ i ≤ 3, 1 ≤ j ≤
3 + 2c} of triples is a bulk synchronous schedule for (G′, p+ 3 + 2c) with three
no-communication phases and two communication phases (See Fig. 5).
Conversely, if (G′, p + 3 + 2c, c) is a ”yes” instance of 3BSSP(c), then let

S′
BSP be a schedule for (G

′, p + 3 + 2c, c). From Lemma 2, LG(3 + 2c, c) must
be scheduled into a bulk synchronous schedule which consists of just three no-
communication phases with one unit length. Therefore, whole S′

BSP must con-
sists of just three no-communication phases with one unit length. Hence, S′

BSP

must become a schedule as shown in Fig. 5. A subset {〈v, q, t〉|〈v, q, t(c + 1)〉 ∈
S′

BSP , 1 ≤ q ≤ p} of S′
BSP is a schedule for (G, p). ��

Theorem 1. For any positive integer c, 3BSSP(c) is NP-complete.

Proof. Since BSSP(c) is NP-complete [6], it is obvious that 3BSSP(c) is in NP.
Hence, from Lemma 3, the theorem follows. ��
Let BSSPO(c) be the optimization counterpart of BSSP(c).

Theorem 2. Let c be any positive integer. Then, a ρ-approximation algorithm
for BSSPO(c) does not exist for any ρ < 4+2c

3+2c unless P = NP.

Proof. From Theorem 1 and Lemma 1, the theorem follows. ��
Theorem 3. A ρ-approximation algorithm for BSSPO does not exist for any
ρ < 6

5 unless P = NP.

Proof. From Theorem 2, a ρ′-approximation algorithm for BSSPO(1) does not
exist for any ρ′ < 6

5 unless P = NP. If a ρ-approximation algorithm A for
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BSSPO exists for some ρ < 6
5 , A can be used as a ρ-approximation algorithm

for BSSPO(1). Hence, the theorem follows. ��

5 Conclusion and Future Work

For the bulk synchronous task scheduling problem, we have proved that there
does not exist a ρ-approximation algorithm for any ρ < 6

5 unless P = NP.
In order to prove that, we have showed that generating a bulk synchronous

schedule of length at most 5 isNP-hard. However, the complexity of the problem
for a schedule of length at most 4 is unknown. The NP-hardness means non-
approximability stronger than our result. So, one of the future work is to clear
the complexity like Hoogeveen et al.’s work [9] for the conventional (i.e., not
bulk synchronous) task scheduling problem.
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