A Semi-dynamic Multiprocessor Scheduling
Algorithm with an Asymptotically Optimal
Competitive Ratio

Satoshi Fujita*

Department of Information Engineering
Graduate School of Engineering, Hiroshima University
Higashi-Hiroshima, 739-8527, Japan

Abstract. In this paper, we consider the problem of assigning a set of
n independent tasks onto a set of m identical processors in such a way
that the overall execution time is minimized provided that the precise
task execution times are not known a priori. In the following, we first
provide a theoretical analysis of several conventional scheduling policies
in terms of the worst case slowdown compared with the outcome of an
optimal scheduling policy. It is shown that the best known algorithm in
the literature achieves a worst case competitive ratio of 1+1/f(n) where
f(n) = O(n*?) for any fixed m, that approaches to one by increasing
n to the infinity. We then propose a new scheme that achieves a better
worst case ratio of 1+ 1/g(n) where g(n) = ©(n/logn) for any fixed m,
that approaches to one more quickly than the other schemes.

1 Introduction

In this paper, we consider the problem of assigning a set of n independent tasks
onto a set of m identical processors in such a way that the overall execution time
of the tasks will be minimized. It is widely accepted that, in the multiprocessor
scheduling problem, both dynamic and static scheduling policies have their own
advantages and disadvantages; for example, under dynamic policies, each task
assignment incurs (non-negligible) overhead that is mainly due to communica-
tion, synchronization, and the manipulation of date structures, and under static
policies, unpredictable faults and the delay of task executions will significantly
degrade the performance of the scheduled parallel programs.

The basic idea of our proposed method is to adopt the notion of clustering
in a “balanced” manner in terms of the worst case slowdown compared with the
outcome of an optimal scheduling policy; i.e., we first partition the given set of
independent tasks into several clusters, and apply static and dynamic schedulings
to them in a mixed manner, in such a way that the worst case competitive ratio
will be minimized. Note that this method is a generalization of two extremal
cases in the sense that the case in which all tasks are contained in a single cluster

* This research was partially supported by the Ministry of Education, Culture, Sports,
Science and Technology of Japan (# 13680417).

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 240-247]
© Springer-Verlag Berlin Heidelberg 2002

A Semi-dynamic Multiprocessor Scheduling Algorithm 241

corresponds to a static policy and the case in which each cluster contains exactly
one task corresponds to a dynamic policy. In the following, we first provide a
theoretical analysis of several scheduling policies proposed in the literature; it
is shown that the best known algorithm in the literature achieves a worst case
competitive ratio of 1 + 1/f(n) where f(n) = O(n?/?) for any fixed m, that
approaches to one by increasing n to the infinity. We then propose a new scheme
that achieves a better worst case ratio of 1 + 1/g(n) where g(n) = ©(n/logn)
for any fixed m, that approaches to one more quickly than the other schemes.

The remainder of this paper is organized as follows. In Section 2] we formally
define the problem and the model. A formal definition of the competitive ratio,
that is used as the measure of goodness of scheduling policies, will also be given.
In Section B, we derive upper and lower bounds on the competitive ratio for
several conventional algorithms. In Section 4 we propose a new scheduling policy
that achieves a better competitive ratio than conventional ones.

2 Preliminaries

2.1 Model

Let S be a set of n independent tasks, and P = {pi,pa,...,pm} be a set of
identical processors connected by a complete network. The execution time of a
task u, denoted by 7(u), is a real satisfying o, < 7(u) < (3, for predetermined
boundaries «,, and f,,, where the precise value of 7(u) can be known only when

the execution of the task completes. Let o def mingeg o, and G def maxyecs By-
A scheduling of task u is a process that determines: 1) the processor on which
the task is executed, and 2) the (immediate) predecessor of the task among those
tasks assigned to the same processmﬂ. Scheduling of a task can be conducted in
either static or dynamic manner. In a static scheduling, each task can start its
execution immediately after the completion of the predecessor task, although in
a dynamic scheduling, each task execution incurs a scheduling overhead e before
starting, the value of which depends on the configuration of the system and the
sizes of S and P.

A scheduling policy A for S is a collection of schedulings for all tasks in
S. A scheduling policy A is said to be “static” if all schedulings in 4 are static,
and is said to be “dynamic” if all schedulings in A are dynamic. A scheduling
policy that is neither static nor dynamic will be referred to as a semi-dynamic
policy.

In this paper, we measure the goodness of scheduling policies in terms of the
worst case slowdown of the resultant schedule compared with the outcome of
an optimal off-line algorithm, where term “off-line” means that it knows precise
value of 7(u)’s before conducting a scheduling; i.e., an off-line algorithm can
generate an optimal static scheduling with overhead zero, although in order to

1 Note that in the above definition, a scheduling does not fix the start time of each
task; it is because we are considering cases in which the execution time of each task
can change dynamically depending on the runtime environment.

242 S. Fujita

obtain an optimal solution, it must solve the set partition problem that is well
known to be NP-complete [1].

Let A(S, m, 7) denote the length of a schedule generated by scheduling policy
A, which assigns tasks in S onto a set of m processors under an on-line selection
T of execution times for all u € S. Let OPT denote an optimal off-line scheduling
policy. Then, the (worst case) competitive ratio of A is defined as

def A(S,m, 7)
AR = S OPT(S,m,)

Note that by definition, r(A,m,n) > 1 for any A, n > 1, and m > 2. In the
following, an asymptotic competitive ratio is also used, that is defined as follows:

r(A,m) def sup (A, m,n).

n>1

2.2 Related Work

In the past two decades, several semi-dynamic scheduling algorithms have been
proposed in the literature. Their main application is the parallelization of nested
loops, and those semi-dynamic algorithms are commonly referred to as “chunk”
scheduling schemes.

In the chunk self-scheduling policy (CSS, for short), a collection of tasks is
divided into several chunks (clusters) with an equal size K, and those chunks are
assigned to processors in a greedy manner [3] (note that an instance with K =1
corresponds to a dynamic scheduling policy). CSS with chunk size K is often
referred to as CSS(K), and in [3], the goodness of CSS(K) is theoretically
analyzed under the assumption that the execution time of each task (i.e., an
iteration of a loop) is an independent and identically distributed (i.i.d) random
variable with an exponential distribution.

Polychronopoulos and Kuck proposed a more sophisticated scheduling policy
called guided self-scheduling (GSS, for short) [4]. This policy is based on the
intuition such that in an early stage of assignment, the size of each cluster can
be larger than those used in later stages; i.e., the size of clusters can follow a
decreasing sequence such as geometrically decreasing sequences. More concretely,
in the i'" assignment, GSS assigns a cluster of size R;/m to an idle processor,
where R; is the number of remaining loops at that time; e.g., R; is initialized to
n, and Ry is calculated as Ry — Ry/m = n(1 — 1/m). That is, under GSS, the
cluster size geometrically decreases as

n/m, n/m(l —1/m), n/m(1—1/m)?

Factoring scheduling proposed in [2] is an extension of GSS and CSS in the sense
that a “part” of remaining loops is equally divided among the available proces-
sors; Hence, by using a parameter ¢, that is a function of several parameters such
as the mean execution time of a task and its deviation, the decreasing sequence of
the cluster size is represented as (n/m)¢, ..., (n/m)t, (n/m)e?, ..., (n/m)e?,.. ..

m m

A Semi-dynamic Multiprocessor Scheduling Algorithm 243

Trapezoid self-scheduling (TSS, for short) proposed in [5] is another exten-
sion of GSS; in the scheme, the size of clusters decreases linearly instead of
exponentially, and the sizes of maximum and minimum clusters can be specified
as a part of the policy. (Note that since the total number of tasks is fixed to
n, those two parameters completely define a decreasing sequence.) In [5], it is
claimed that TSS is more practical than GSS in the sense that it does not require
a complicated calculation for determining the size of the next cluster.

3 Analysis of Conventional Algorithms

This section gives an analysis of conventional algorithms described in the last
section in terms of the competitive ratio.

3.1 Elementary Bounds

Recall that o & minges o, and g def max,cs By. The competitive ratio of any
static and dynamic policies is bounded as in the following two lemmas (proofs
are omitted in this extended abstract).

Lemma 1 (Static). For any static policy A and for any m > 2, r(A,m) >
1+ %, and the bound is tight in the sense that there is an instance that
achieves it.

Lemma 2 (Dynamic). 1) For any dynamic policy A and for any m,n > 2,
r(A,m,n) > 1+¢€/a, and 2) for any 2 < m < n, there is a dynamic policy A*
such that r(A*,m,n) <14 £+ (%) (z).

The goodness of chunk self-scheduling (CSS) in terms of the competitive ratio
could be evaluated as follows.

«

Theorem 1 (CSS). r(CSS,m,n) is at least 1+ <2 Be) VI B Cphieh

is achieved when the cluster size is selected as K = L/ne/mﬂ-‘.

Since the largest cluster size in GSS is n/m, by using a similar argument to
Lemmalll, we have the following theorem.

Corollary 1 (GSS). r(GSS,m,n) > 1+ f_(; .
TR

A similar claim holds for factoring method, since it does not take into ac-
count two boundaries o and 3 to determine parameter ¢; i.e., for large 8 such
that B(n/m)¢ > {n — (n/m)L}a, we cannot give a good competitive ratio that
approaches to one.

244 S. Fujita

3.2 Clustering Based on Linearly Decreasing Sequence

Let A be a positive integer that is given as a parameter. Consider a sequence of
integers s1, $a, . . ., defined as follows: s; = s1 — A(i —1) fori =1,2,.... Let k be
an integer such that Zi:ll s <n< Zle s;. Trapezoid self-scheduling (TSS) is
based on a sequence of k clusters Si,Ss,..., Sk, such that the sizes of the first
k — 1 clusters are si,S9,...,Sk_1, respectively, and that of the last cluster is
n— " "s;. (A discussion for rational A’s is complicated since it depends on
the selection of m and n; hence we leave the analysis for rational A’s as a future
problem.)
In this subsection, we prove the following theorem.

Theorem 2. 7(T'SS,m,n) > 1+ 1/f(n) where f(n) = O(n?/3) for fived m.

Proof. If k < m, then the same bound with Lemma [l holds since in such cases,
|S1] > n/m must hold. So, we can assume that k > m, without loss of generality.
Let t be a non-negative integer satisfying the following inequalities:

(t+1)m < k < (t+2)m.

In the following, we consider the following three cases separately in this order;
i.e., when ¢ is an even greater than or equal to 2 (Case 1), when t is odd (Case
2), and when t = 0 (Case 3).

Case 1: For even t > 2, we may consider the following assignment 7 of
execution times to each task:

— if [Stmy1| > 2|S(t41)m+1| then the (tm +1)st cluster Sy, 41 consists of tasks
with execution time 3, and the other clusters consist of tasks with execution
time «, and

— if [Stmy1] < 2[S@41)m+1| then the (tm +m +1)st cluster S;41)m41 consists
of tasks with execution time (3, and the other clusters consist of tasks with
execution time a.

Since S contains at most |Syn41| tasks with execution time 8 and all of the
other tasks have execution time «, the schedule length of an optimal (off-line)
algorithm is at most

OPT =

no + (/6 a)|Stm+1| + 5 (1)
m

where the first term corresponds to the minimum completion time among m

processors and the second term corresponds to the maximum difference of the

completion times. On the other hand, for given 7, the length of a schedule

generated by TSS is at least

(B —)[Stm+1]

no
TSS = " 4t + : 2)

where the first term corresponds to an optimal execution time of tasks provided
that the execution time of each task is «, the second term corresponds to the

A Semi-dynamic Multiprocessor Scheduling Algorithm 245

total overhead (per processor) incurred by the dynamic assignment of tasks, and
the third term corresponds to the minimum difference of the completion times
between the longest one and the others, provided that the execution time of tasks
of one cluster (i.e., Stymt1 OF Stintm+1) becomes 3 from a. Note that under TSS,
clusters are assigned to m processors in such a way that all processors complete
their (2¢)th cluster simultanesously for each 1 < i < ¢/2, and either Sy,,4+1 or
Stm+m+1 Will be selected as a cluster consisting of longer tasks. Note also that
by the rule of selection, at least |Symn41|/2 tasks contribute to the increase of the
schedule length, according to the change of execution time from « to .
Hence the ratio is at least

no/m+te+ (8 —)| Spm+r1l/2

T(GSS,man) = na/m+(ﬁ—a)‘5tm+1‘/m+ﬁ_a
Lt (8=) (S /2 = [Sum il =)
na+ (6 — a)([Sum1| +m)
oy k= (B at mt (8= a)Sumerl(m/2— 1)

- na+ (6 = a)(|Sum41| +m)

where the last inequality is due to tm < k — m.

Now consider the following sequence of clusters 57,55, ..., S}, such that |S}| =
|S7|—A'(i—1) for some A', |S}| = 1, and Zf;l |Si| = n. It is obvious that |S;| >
|S;| for k/2 < i <k, and tm +1 > k/2 holds since t > 2; i.e., [Spmy1| > [Shniil-
On the other hand, since |S]| = 2n/k and tm+1—k > m, we can conclude that
|Stmi1] > 2nm/k2. By substituing this inequality to the above formula, we have

ek—(b—a+em+ (B—Q)QZ;”(mﬂ— 1)
no+ (8 — a)(|Sumsr| +m)
ek—(b—a+em+ (ﬂ—a)%(m/?— 1)

fn+ (8 —a)m ’

r(TSS,m,n)>1+

where the right hand side takes a minimum value when ek = (8—a)%4%(m/2-1),
i.e., when k ~ ¢/ m Hence by letting k = ©(/n), we have r(T'SS,m,n) >
1+ 1/f(n) where f(n) = O(n?/3) for any fixed m.

Case 2: For odd ¢ > 1, we may consider the following assignment 7 of
execution times to each task:

— if [Stma1| = 2[S41)ym+1le/(B—a) then the (tm+1)st cluster S, 41 consists
of tasks with execution time (3, and the other clusters consist of tasks with
execution time a.

— if [Stmy1| < 2|S41)yms1le/(B—a) then the (tm—+m+-1)st cluster Si41ym41
consists of tasks with execution time 3, and the other clusters consist of tasks
with execution time a.

For such 7, an upper bound on the schedule length of an optimal (off-line)
algorithm is given as in Equation (), and the length of a schedule generated by

246 S. Fujita

TSS can be represented in a similar form to Equation (@), where the last term
should be replaced by

(B — @) |Stmt1| — | Stmimy1| > w

when Si,+1 is selected, and by

(ﬁ - a)2|Stm+1 ‘

(B —)| Stmtma1| > 70

when Sy 1)m+1 is selected. Note that in both cases, a similar argument to Case
1 can be applied.

Case 3: When ¢t = 0, we may use 7 such that either S or S;, 1 is selected
as a cluster with longer tasks as in Case 1, and for such 7, a similar argument
to Lemma [I holds. Q.E.D.

4 Proposed Method

In this section, we propose a new semi-dynamic scheduling policy that exhibits a
better worst case performance than the other policies proposed in the literature.
Our goal is to prove the following theorem.

Theorem 3. There exists a semi-dynamic policy A such that r(A,m,n) =1+
1/g(n) where g(n) = O(n/logn) for any fixed m.

In order to clarify the explanation, we first consider the case of m = 2. Con-
sider the following (monotonically decreasing) sequence of integers sg, s1, S2, . . .:

n ifi=0
5= ’V(aij_ﬁ) 51‘—1—‘ if 4 Z 1.

Let k be the smallest integer satisfying s < 2 + g Note that such a k always
exists, since s; > s;_1 for any ¢ > 1, and if s = sp/_; for some &/, then
k' > k must hold (i.e., s1,82,...,5 is a strictly decreasing sequence). In fact,

Sk = Sp/_1 implies (%) Spr—1 > Spr—1 — Ly ie, s <14 g (< 2+ g)
By using a (finite) sequence s, $1, ..., sk, we define a partition of S, i.e.,

{Sl, SQ, ceey Sk, Sk+1}, as follows:

1541 def [si—1—s;ifi=1,2,...,k and
] sk ifi=k+1.

By the above definition, we have

dorw< D T

uesS; UGSH_lU...USk

A Semi-dynamic Multiprocessor Scheduling Algorithm 247

for any ¢ and 7, provided that it holds o < 7(u) < 8 for any u € S. Hence, by
assigning clusters S1,Ss, ..., Sg+1 to processors in this order, we can bound the
difference of completion times of two processors by at most §|Sk| + €; i.e., we
can bound the competitive ratio as

(X + (k+1)e)/2+ Bl Skra| +e N ke + 28| Sk+1] + 3¢

r(4,2) < X/2 - no

3)

Since we have known that |Si4+1] < 2+ g, the proof for m = 2 completes by
proving the following lemma.
Lemma 3.

logy 1
~ logy(1+a/B)

Proof. Let a be a constant smaller than 1. Let f,(z) %ef [az], and let us denote

fi(z) ef fa(fi=Y(x)), for convenience. Then, by a simple calculation, we have

f;(a?)gazxx+al_1+al_2+~-~+1 < a’xx—i—li.
—a

Hence, when a = (O%B) and ¢ = log(y,/4) 1, since a’ = 1/n, we have
; 1 1
fin)<—=xn4+ ———~ = 2+é
n 17(B) a
a+p3
Hence, the lemma follows. Q.E.D.

We can extend the above idea to general m, as follows: Given sequence of
clusters S, 55, ..., Sk+1, we can define a sequence of (k4 1)m clusters by parti-
tioning each cluster into m (sub)clusters equally (recall that this is a basic idea
that is used in the factoring method). By using a similar argument to above, we
can complete the proof of Theorem Bl

References

1. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide for the
Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

2. S. F. Hummel, E. Schonberg, and L. E. Flynn. Factoring, a method for scheduling
parallel loops. Communications of the ACM, 35(8):90-101, August 1992.

3. C.P. Kruscal and A. Weiss. Allocationg independent subtasks on parallel processors.
IEEE Trans. Software Eng., SE-11(10):1001-1016, October 1985.

4. C. Polychronopoulos and D. Kuck. Guided self-scheduling: A practical self-
scheduling scheme for parallel supercomputers. IEEE Trans. Comput., C-
36(12):1425-1439, December 1987.

5. T. H. Tzen and L. M. Ni. Trapezoid self-scheduling: A practical scheduling scheme
for parallel compilers. IEEE Trans. Parallel and Distributed Systems, 4(1):87-98,
January 1993.

	1 Introduction
	2 Preliminaries
	2.1 Model
	2.2 Related Work

	3 Analysis of Conventional Algorithms
	3.1 Elementary Bounds
	3.2 Clustering Based on Linearly Decreasing Sequence

	4 Proposed Method
	References

