
B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 385–390.
 Springer-Verlag Berlin Heidelberg 2002

A Delayed-Initiation Risk-Free Multiversion
Temporally Correct Algorithm1

Azzedine Boukerche and Terry Tuck

Department of Computer Sciences, University of North Texas
{boukerche, tuck}@cs.unt.edu

Abstract. In this paper, we devise a “temporally reordering” mechanism of
supporting update transactions that are impacted by delays (e.g., network de-
lays) to the extent that they cannot be executed because of the irreversible pro-
gress of other conflicting transactions (i.e., data dependent and temporally
dependant) extend this scheme with a delayed-initiation mechanism. This
mechanism allows (a) the impacted update transaction to be repositioned to the
earliest supportable point in the temporal ordering of transactions, and (b) the
associated transaction manager (and in turn, the application or entity that sub-
mitted the transaction) to be notified of the new position, thereby providing the
opportunity for adjustments or transaction termination. We describe the risk-
free MVTC (RF-MVTC) algorithm and its delay-initiation variation (RF-
MVTCD). We also present the set of experiments we have carried out to study
the performance of MVTC and its variations: RF-MVTC, and RF-MVTCD.

1 Introduction

In our earlier work, we have proposed table-level writeset predeclarations as a method
for identifying a priori inter-transactional conflict. This novel method allows transac-
tion concurrency (i.e., speed) to be increased without a corresponding increase in the
risk of encountering unidentified conflict. Consequently, a risk-free MVTC concur-
rency control algorithm as a risk free alternative to Conservative MVTC was pro-
posed in [1,2]. In this paper, we devise a temporally reordering” mechanism of
supporting update transactions that are impacted by delays (e.g., network delays) to
the extent that they cannot be executed because of the irreversible progress of other
conflicting transactions (i.e., data dependent and temporally dependant) extend this
scheme with a delayed-initiation mechanism. This mechanism allows (a) the impacted
update transaction to be repositioned to the earliest supportable point in the ordering
of transactions, and (b) the associated transaction manager (and in turn, the applica-
tion or entity that submitted the transaction) to be notified of the new position,
thereby providing the opportunity for adjustments or transaction termination.

In our database model, the requirement of immediate execution of write operations
requires support for multiple versions of each data item. Reducing semantic incor-
rectness associated with the return of an incorrect data item version suggests a non-

1 This work was supported by the Texas Advanced Research Program ARP/ATP and UNT Faculty Research

Grants.

386 A. Boukerche and T. Tuck

aggressive, if not conservative, synchronization technique. The requirement for an
execution schedule that is equivalent to a timestamp-ordered serial schedule necessi-
tates the use of timestamp ordering. Finally, the requirement for improved concur-
rency combined with a non-aggressive synchronization technique requires
predeclaration of the data items to be accessed. Combining this with the requirement
for ease of use for the application developer requires that predeclaration be done at
other than the data-item level.

2 Risk-Free MVTC and Its Delayed-Initiation Variation

The correctness constraint for all schedules produced by the MVTC concurrency con-
trol algorithm is that they are conflict serializable and computationally equivalent to a
temporally ordered serial schedule for the same set of transactions. As its name im-
plies, the operation of the Risk-free MVTC algorithm is further constrained to be risk-
free with respect to the semantic correctness of all responses to read messages. In
other words, the risk associated with the temporary return of incorrect values followed
by an abort is avoided. In our earlier work, we have shown that both conservative and
risk-free MVTC exhibit a better performance than previous concurrency control
schemes. However, due to unexpected events such as network failures or site failures
in a distributed environment, these schemes may fail. Hence, win this paper, we intro-
duce a delay-initiation variant of the Risk-free MVTC algorithm. The key idea of this
scheme is that if we delay the initiation of every transaction’s first read message, we
provide a delay for transactions that offsets anomalous2 network delays incurred by
begin messages of older transactions. This delaying strategy effectively normalizes
the network delays incurred by transactions during the first part of their execution.
This scheme is relatively simple in comparison with the original MVTC algorithm,
yet is potentially more robust with respect to late-arriving begin messages. The trade-
off for this increased robustness is an expected delay in the response to a transaction’s
first read operation.

While Write and Read rules are the same as those for MVTC. The Read rule, when
combined with the design constraint of being risk-free (i.e., avoiding semantic incor-
rectness associated with the return of an incorrect version for the targeted data item),
requires that a database delay its response to a read request until the correct version is
both available and committed. The Delay rule ensures that every read request is re-
turned to the correct and committed data-item value. When combined with the Read
rule, the Delay rule allows databases to respond to read requests with only data values
that have been written by committed transactions that immediately precede the reader
in the temporal order in terms of data-item-level conflict. When combined with the
Reorder rule (below), the second part of Delay rule offers the advantage that all re-
sponses are risk-free, and no transaction will ever need to be restarted for updates of a
late-arriving writing transaction. The Delay rule is an effective read-write synchroni-
zation mechanism as long as the writing transaction’s begin message is received at the
database prior to its processing of a conflicting read from a younger transaction.
However, it is possible for the writer’s begin message to be affected by network de-

2 If network delays are identical for all messages there can be no “late” begins, as all younger read msgs will be

equally late.

A Delayed-Initiation Risk-Free Multiversion Temporally Correct Algorithm 387

lays (or similar) to the extent that it is received at the local database after the servicing
of a conflicting read. In such cases, it is necessary to reposition the writer in the tem-
poral order of transactions to the earliest position that maintains that the writer is
younger than all serviced readers of the declared tables.

The concept of delayed initiation is best explained by first detailing the events that
motivate its use. With the original Risk-free MVTC algorithm, whenever a transac-
tion’s begin message arrives at a local database at which some younger reader has
already accessed, there is a chance that allowing the older transaction to proceed will
lead to a non-serializable schedule. This chance exists when the reader has read from
one of the tables included in the table list of the delinquent begin, and is a tested con-
dition in the algorithm’s processing of begin messages. In order to avoid the risk of a
non-serializable schedule, the corrective action with the Risk-free MVTC algorithm is
to reject the begin, and return with the rejection a new timestamp that will reorder the
associated transaction to a younger temporal position. Recall that the key to the con-
cept of delayed initiation is the realization that a delay between the receipt and the
processing of the younger transaction’s read message decreases the likelihood of a
reorder.

With respect to transaction turnaround times, the delayed initiation approach may
appear to be a costly approach for the sake of reducing transaction reorders. Since the
issue is one of trading longer turnaround times for fewer transaction reorders, the ac-
tual cost is application specific, and calculable only after identifying within the appli-
cation the impact of reordered transactions. However, the general cost of the approach
is limited by several factors that are identified in the following points: (i) Update-only
transactions need not be delayed. If a transaction includes no read operations, cannot
cause another older transaction to be reordered; (ii) At most one delay is needed per
transaction. By delaying the processing of a transaction’s first read, all reads within
the transaction are effectively delayed; and (iii) Transaction timestamps facilitate de-
lay calculations. Since timestamps reflect the global system time of a transaction’s
initiation at its associated transaction manager, the duration of the delay between re-
ceipt and processing of a particular read can be limited to the needed amount.

To be more in-line with the intent of delayed-initiation, it is more desirable to in-
duce a fixed-duration delay between the start of transactions and the processing of
their first read messages. For example, it might be desirable to ensure that (a) no first
read message is processed without a delay of, say, twice the expected network delay,
and (b) no first read message is further delayed if it has already incurred a delay of
more than twice the expected network delay. Transaction timestamps provide a sim-
ple way to calculate the duration of delays. Since timestamps reflect the global system
time of a transaction’s initiation at its associated transaction manager, the actual delay
incurred by a transaction’s first read can be calculated: delayactual = treceipt – timestamp.
Given a specific value for the desired delay before the processing of transactions’ first
read messages, delaytotal, the delayed-initiation delay is the difference of the two: de-
laydi = delaytotal – delayactual, such that delayactual < delaytotal .

3 Simulation Experiments

In our experiments to evaluate the performance of MVTC and its Risk-Free delayed
initiated variation scheme, we have used two types of platforms interconnected with

388 A. Boukerche and T. Tuck

a 10 Mbs LAN. In order to reduce the likelihood of conflict between update transac-
tions, the writeset size was fixed at two data items. The data items selected for update
were chosen at random, thereby distributing the probability of update uniformly
across all data items within the database. In order to increase the likelihood of conflict
with the read-only transactions, the ratio of update to read-only transactions was set at
4-to-1. This is accomplished in the experiment runs by restricting each TM to one of
the two types of transactions, and allowing the TMs to execute as many transactions
as possible within a run. In all runs, 10 TMs were executed simultaneously against a
single database. The readsets for the read-only transactions were selected using a se-
quential pattern in order to produce readsets consisting of adjacent data items. This
pattern was chosen in an effort to focus the accesses of each read-only transaction to
the fewest tables without reading any data item more than once. Using this pattern,
experiment runs were executed with mean readset sizes for the read-only transactions
of 5- 100 data items. As a percentage of the total database size, these readset sizes
correspond to 1-10, and 20%, respectively.

Let us now turn to our results.
(a) Our results indicate that each of the algorithms executed the most update trans-

actions for the runs with smaller readset sizes. For the proposed algorithms, with only
two TMs executing read-only transactions, resource contention at the database is rela-
tively low with the smaller transactions, and the update transactions are consequently
able to execute more quickly. With C-MVTO, however, the higher throughput for the
runs with smaller read-only transactions is an indirect result of the blocks by the up-
date transactions on read-only transactions being relatively short. Unlike the proposed
algorithms, as the size of the read-only transactions is increased, the throughput with
C-MVTO decreases substantially, as the duration of blocks is increased by larger
readset sizes.

Regarding the relative performance of the different algorithms, our results clearly
shows the poor performance of C-MVTO; it is able to execute update transactions at
an average throughput of only 37% of that with RFMVTC-D, the poorest performing
of the proposed algorithms. This result was expected, since the lack of table prede-
clarations with C-MVTO means that progress on each TM’s transaction must be
blocked until no other younger transactions are active. RFMVTC, on the other hand,
provided the highest throughput at an average of over 112 offsets the negative impact
on turnaround time. The most significant positive effect caused by the delayed initia-
tion is a smaller fraction of update transactions that experience blocks on conflicting
transactions. Indeed, we have observed that the fraction transactions per second.
MVTC was the middle-performing proposed algorithm. It averaged 84% of the
throughput of RFMVTC, and 9% better than RFMVTC-D.

Our results also indicate that the higher performance for throughput in comparison
to turnaround time, a positive effect caused by the delayed initiation that of blocks for
RFMVTC-D was less than 50% of that for the other two algorithms. By delaying the
initiation of a given transaction, it becomes more likely that conflicting transactions
will commit prior to the transaction’s initiation. Consequently, it becomes less likely
that blocks are required for any given transaction.

(b) During the course of our experiments, we have observed that as the size of the
read-only transactions is increased, the necessary decrease in throughput occurs with
all algorithms. For experiment runs with the smallest readset sizes (i.e., those with
readsets fewer than 25 data items), the proposed MVTC algorithm and its delayed

A Delayed-Initiation Risk-Free Multiversion Temporally Correct Algorithm 389

initiated risk free variation yield significantly greater throughput than C-MVTO.
Without the benefit of table-level writeset predeclarations, C-MVTO must block the
execution of every read-only transaction while younger transactions are active,
thereby missing the advantage of concurrency experienced with the proposed algo-
rithms. As the size of the readsets is increased, the duration of the blocks decreases
relative to the time required for reading more data items. For runs with readset sizes
of 50 or more, throughput with C-MVTO surpasses that with MVTC and RFMVTC.
This is due to contention at the database, and is covered in the discussion section.

We have also observed that RFMVTC outperforms both MVTC and RFMVTC-D in
terms of throughput for runs with the smallest readset sizes. The impact of additional
overhead with MVTC and delayed initiation with RFMVTC-D is too great in compari-
son to the potential benefits, constrained by only two TMs executing relatively small
read-only transactions. For runs with readsets of five data items, throughput with
MVTC and RFMVTC-D lag that with RFMVTC by 10% and 14%, respectively. For runs
with readset sizes of 25 or more data items, RFMVTC-D replaces RFMVTC as the
best-performing algorithm. This appears to be an indirect benefit of the delayed initia-
tion mechanism. With eight TMs concurrently executing the smaller update transac-
tions, the fraction of their time spent idle during the delayed initiation is significant.
The execution of the read-only transactions benefits from the reduced-contention da-
tabase resulting from the delays with the update transactions.

(c) Our results indicate that the turnaround time increases as the readsets become
larger. Our results indicate that RFMVTC provides the highest performance for
smaller readsets, and RFMVTC-D the highest for larger readsets. The explanations
for the relative performance differences provided in the throughput discussion hold
here.

Read-only transaction performances with the MVTC and RFMVTC algorithms are
contrasted. As the readset size increases from 5 data items, the relative performance
of MVTC drops. At 25 data items, the advantage for RFMVTC reaches its maximum:
the overall read-only transaction performance for MVTC is only 70% of that with
RFMVTC. However, at this point the trend reverses, and the relative performance of
MVTC increases with larger readset sizes. For runs with the largest readset size, per-
formance with MVTC is within 5% of that with RFMVTC.

4 Conclusion

In this paper, we have proposed to enhance the MVTC scheme by introducing the
delayed-initiation variant to the Risk-free MVTC concurrency control algorithm.
With the inclusion of the delayed-initiation mechanism, this algorithm maintains the
benefits of the original Risk-free MVTC algorithm while addressing its shortcoming:
increased temporal reordering. We have also presented a set of experiments to study
the performance of MVTC and its risk-free and delay initiation variations. Our results
indicate that for less-tolerant applications, the delayed-initiation variant of Risk-free
MVTC is the algorithm of choice; our experimental results show that it provides good
performance even when long-duration delays are used for the delayed-initiation
mechanism.

390 A. Boukerche and T. Tuck

References

[1] Boukerche, A., S. K. Das, A. Datta and T. LeMaster. “Implementation of a Virtual Time
Synchronizer for Distributed Databases.” Proceedings of EuroPar ’98, LNCS, 534-538.

[2] Boukerche A, Tuck T., "Improving Conservative Concurrency Control in Distributed Data-
bases", Proc. EuroPar 2001, LNCS 2150, Springer Verlag, pp. 301-309, 2001.

[3] Georgakopoulos, D., M. Rusinkiewicz and W. Litwin. “Chronological Scheduling of Trans-
actions with Temporal Dependencies.” VLDB Journal 3:1 (January 1994): 1-28.

[4] Jefferson, D., and A. Motro. “The Time Warp Mechanism for database concurrency con-
trol.” Proc. of the 2nd Int’l Conference on Data Engineering, (1986): 474-481.

[5] Nicol, D.M. and X. Liu. “The Dark Side of Risk (What your mother never told you about
Time Warp).” Proc. of the 11th Workshop on Parallel and Distributed Simulation, (1997):
188-195.

[6] Özsu, M.T. and P.Valduriez. Principles of Distributed Database Systems. Prentice Hall,
1999.

	1 Introduction
	2 Risk-Free MVTC and Its Delayed-Initiation Variation
	3 Simulation Experiments
	4 Conclusion
	References

