
Stochastic Simulation
of a Marine Host-Parasite System

Using a Hybrid MPI/OpenMP Programming

Michel Langlais1,�, Guillaume Latu2,∗, Jean Roman2,∗, and Patrick Silan3

1 MAB, UMR CNRS 5466, Université Bordeaux 2,
146 Léo Saignat, 33076 Bordeaux Cedex, France

Michel.Langlais@sm.u-bordeaux2.fr
2 LaBRI, UMR CNRS 5800, Université Bordeaux 1 & ENSEIRB

351, cours de la Libération, 33405 Talence, France
{latu|roman}@labri.fr

3 UMR CNRS 5000, Université Montpellier II, Station Méditerranéenne de
l’Environnement Littoral, 1 Quai de la Daurade, 34200 Sète, France

silan@univ-montp2.fr

Abstract. We are interested in a host-parasite system occuring in fish
farms, i.e. the sea bass - Diplectanum aequans system. A discrete math-
ematical model is used to describe the dynamics of both populations.
A deterministic numerical simulator and, lately, a stochastic simula-
tor were developed to study this biological system. Parallelization is
required because execution times are too long. The Monte Carlo algo-
rithm of the stochastic simulator and its three levels of parallelism are
described. Analysis and performances, up to 256 processors, of a hy-
brid MPI/OpenMP code are then presented for a cluster of SMP nodes.
Qualitative results are given for the host-parasite system.

1 Introduction

Host-parasite systems can present very complex behaviors and can be difficult
to analyse from a purely mathematical point of view [12]. Ecological and epi-
demiologic interests are motivating the study of their population dynamics. A
deterministic mathematical model (using some stochastic elements) for the sea
bass–Diplectanum aequans system was introduced in [3,6]. It concerns a patho-
logical problem in fish farming. Numerical simulations and subsequent quantita-
tive analysis of the results can be done, and a validation of the underlying model
is expected. Our first goal in this work is to discover the hierarchy of various
mechanisms involved in this host-parasite system. A second one is to under-
stand the sensitivity of the model with respect to the initial conditions. In our
model, many factors are taken into account to accurately simulate the model,
e.g. spatial and temporal heterogeneities. Therefore, the realistic deterministic

� Research action ScAlApplix supported by INRIA.

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 436–446.
c© Springer-Verlag Berlin Heidelberg 2002



Stochastic Simulation of a Marine Host-Parasite System 437

simulator has a significant computation cost. Parallelization is required because
execution times of the simulations are too long [7].
Individual-Based Models (IBM) are becoming more and more useful to de-

scribe biological systems. Interactions between individuals are simple and local,
yet can lead to complex patterns at a global scale. The principle is to replicate
several times the simulation program to obtain statistically meaningful results.
In fact, a single simulation run driven by a sequence of pseudo-random numbers
is not representative for a set of input parameters. Then, outputs are averaged for
all theses simulation runs (or replicates). The Individual-Based Model approach
contrasts with a more aggregate population modeling approach, and provides a
mechanistic rather than a descriptive approach to modeling. Stochastic simula-
tions reproduce elementary processes and often lead to prohibitive computations.
Hence, parallel machines were used to model complex systems [1,8,9].
In this work, a description of the biological background and of performances

of the deterministic simulator is briefly given. Next, we present the main is-
sues concerning the parallel stochastic simulator. We point out the complexity
of computations and, then, we develop our parallel algorithmic solution and in-
vestigate its performances. Hybrid MPI and OpenMP programming is used to
achieve nested parallelization. Finally, we present some of the biological results
obtained for an effective implementation on a SP3 IBM machine. This work re-
ceived a grant from ACI bio-informatique. This project is a collaborative effort
in an interdisciplinary approach: population dynamics with CNRS, mathematics
with Université Bordeaux 2, computer science with Université Bordeaux 1.

2 Description of the Biological Background

In previous works [3,6,12], the mathematical model of the host-parasite system
was presented; a summary is given now. The numerical simulation is mainly
intended to describe the evolution of two populations, hosts and parasites, over
one year in a fish farm. After a few time steps, any parasite egg surviving natural
death becomes a larva. A time step ∆t=2 days corresponds to the average life
span of a larva. The larva population is supplied by eggs hatching and by an
external supply (larvae coming from open sea by pipes). An amount of L(t) larvae
is recruited by hosts, while others die. Highly parasitized hosts tend to recruit
more parasites than others do. This means that the parasite population is over-
dispersed or aggregated with the host population. Most parasites are located on
a few hosts. A detailed age structure of the parasites on a given host is required
because only adult parasites lay eggs, while both juvenile and adult parasites
have a negative impact on the survival rate of hosts. The population of parasites
is divided into K = 10 age classes, with 9 classes of juvenile parasites and one
large class for adult parasites. We consider that only a surfeit of parasites can
lead to the death of a host. Environmental and biological conditions are actually
used in the simulations, e.g. water temperature T (t), death rate of parasites
µ(T (t)). The final goal is to obtain values of state variables at each time step.



438 M. Langlais et al.

3 Deterministic Numerical Simulation

The elementary events of one time step are quantified into probabilistic functions
describing interactions between eggs, larvae, parasites and hosts. The frequency
distribution of parasite numbers per host is updated with deterministic equations
(without random number generation). Let C(K, S) be the complexity of one
time step. The S variable is limited to the minimum number of parasites that
is lethal for a fish (currently S ≤ 800); K is the number of age classes used
(K =10). A previous study [5] led to a reduced update cost of C(K, S)=K S4

for one time step ∆t, and one has C(10, 800)= 950 GFLOP. This large cost comes
from the fine distribution of parasites within the host population, taking care
of the age structure of parasites. A matrix formulation of the algorithm allows
us to use BLAS 3 subroutines intensively, and leads to large speedups. Different
mappings of data and computations have been investigated. A complete and
costly simulation of 100 TFLOP lasts only 28 minutes on 128 processors (IBM
SP3 / 16-way NH2 SMP nodes of the CINES1) and 9 minutes on 448 processors.
The performance analysis has established the efficiency and the scalability of the
parallel algorithm [7]. Relative efficiency of a 100 TFLOP simulation reached
83% using 128 processors and 75% using 448 processors.

4 Stochastic Model of Host-Parasite Interactions

For an Individual-Based Model, basic interactions are usually described between
the actors of the system. Hosts and settled parasites are represented individ-
ually in the system, while eggs and larvae are considered globally. This al-
lows to compare the deterministic and stochastic simulators, because only the
inter-relationship between host and parasite populations are modeled differently.
The deterministic simulator produces one output for a set of input parameters,
whereas the stochastic simulator needs the synthesis of multiple different sim-
ulation runs to give a representative result. The number of replications R will
depend on the desired accuracy of the outputs. We now describe how to manage
host-parasite interactions. Let H i be the host object indexed by i. Let H

p
i be

the amount of parasites on the host H i.

- The probability for the host H i to die, between time t and t+∆t, is given
by π(H p

i ). A random number x is uniformly generated on [0, 1] at each time
step and for each living host H i. If x ≤ π(H p

i ), then H i dies.
- Consider that P i(q) is the amount of parasites of age q∆t settled on the host

H i. Assume that the water temperature is T (t), the death rate of parasites
is µ(T (t)). A binomial distribution B(P i(q);µ(T (t))) is used to compute how
many parasites among P i(q) are dying during the time step t. All surviving
parasites are moved to P i(q + 1) (for 0< q < K), see figure 1. In short, for
each host and each age class of parasites, a random number is generated
using a binomial distribution to perform the aging process of parasites.

1 Centre Informatique National de l’enseignement supérieur - Montpellier, France.



Stochastic Simulation of a Marine Host-Parasite System 439

Fig. 1. Update of all living hosts and parasites at time t

- A function f(p, t) gives the average percentage of larvae that are going to
settle on a host having p parasites. Let L(t) be the number of recruited
larvae, one has: ∑

i/with H i living at time t

f(H p
i , t)L(t) = L(t) . (1)

The recruitment of L(t) larvae on H(t) hosts must be managed. Each host
H i recruits a larva with mean f(H p

i , t). Let Ri be the variable giving the
number of larvae recruited by H i at time t+∆t. Let i1, i2.., iH(t) be the
indices of living hosts at time t. To model this process, a multinomial dis-
tribution is used: (Ri1 , Ri2 , ..RiH(t)) follows the multinomial distribution
B(L(t); f(H p

i1
, t), f(H p

i2
, t).., f(H p

iH(t)
, t)). One has the property that

Ri1+Ri2+..+RiH(t)=L(t).

5 Stochastic Algorithm

The algorithm used in the stochastic model is detailed in figure 2. Parts related
to direct interactions between hosts and parasites (i.e. 2.2.6, 2.2.7 and 2.2.8)
represent the costly part of the algorithm.
On a set of benchmarks, these correspond to at least 89% of execution time

for all simulation runs. For simulations with long execution times, parasites
and hosts appear in large numbers. For this kind of simulations, the epizooty
develops for six months. One can observe more than 4 × 103 hosts and 106
parasites at a single time step. The most time consuming part of this problem
is the calculation of the distribution of larvae among the host population (2.2.6
part). With the elementary method to reproduce a multinomial law, it means
a random trial per recruited larva; the complexity is then Θ(L(t)). In the 2.2.7
part, the number of Bernoulli trials to establish the death of hosts corresponds to
a complexity Θ(H(t)). In the 2.2.8 part, each age class q∆t of parasites of each



440 M. Langlais et al.

1. read input parameters;
2. For all simulation runs required r ∈ [1, R] ;

2.1 initialize, compute initial values of data;
2.2 for t := 0 to 366 with a time step of 2

2.2.1 updating environmental data;
2.2.2 lay of eggs by adult parasites;
2.2.3 updating the egg population (aging);
2.2.4 hatching of eggs (giving swimming larvae);
2.2.5 updating the larva population (aging);
2.2.6 recruitment of larvae by hosts;
2.2.7 death of over-parasitized hosts;
2.2.8 updating the parasite population on hosts (aging);
End for

2.3 saving relevant data of simulation run ‘‘r’’;
End for

3. merging and printing results of all simulation runs.

Fig. 2. Global algorithm

host i is considered to determine the death of parasites. For each and every one,
one binomial trial B(P i(q);µ(T (t))) is done, giving a Θ(K×H(t)) complexity.
So, one time step of one simulation run grows as Θ(H(t)+L(t)). For a long
simulation, the 2.2.6 part can take up to 90 % of the global simulation execution
time, and after a few time steps, one has H(t)� L(t). In that case, the overall
complexity of the simulation is Θ(

∑
t∈[0,366] L(t)). The sum of recruited larvae

over one year reaches 2 × 108 in some simulations. Considering R replications,
the complexity is then R Θ(

∑
t∈[0,366] L(t)).

The main data used in the stochastic simulator are hosts and age classes of
parasites. The memory space taken for these structures is relatively small in our
simulations: Θ(K H(t)). Nevertheless, to keep information about each time step,
state variables are saved to do statistics. For J saved variables and 183 steps,
the space required for this record is Θ(183 J R), for all simulation runs.

6 Multilevel Parallelism for Stochastic Simulations

Several strategies of parallelization are found in the literature for stochastic sim-
ulations. First, all available processors could be used to compute one simulation
run; simulation runs are then performed one after the other. Generally, a spatial
decomposition is carried out. In multi-agent systems, the space domain of agent
interactions is distributed over processors [8,9]. For a cellular automaton based
algorithm, the lattice is split among processors [1]. Nevertheless, this partition-
ing technique is available only if the granularity of computation is large enough,
depending on the target parallel machine.
A more general approach for a stochastic simulation consists in mapping repli-
cates onto different processors. Then, totally independent sequences of instruc-
tions are executed. At the end of all simulation runs, outputs are merged to gen-
erate a synthesis, i.e. means and standard deviations of state variables for each
time step. However, this approach shows limitations. If simulation runs have not
equal execution times, it leads to load imbalance. This potential penalty could be



Stochastic Simulation of a Marine Host-Parasite System 441

partly solved with dynamic load balancing, if simulation runs could be mapped
onto idle processors, whenever possible. The required number of simulation runs
is a limitation too, because one has for P processors, P ≤ R. Finally, the over-
head of the step used to generate final outputs must be significantly lower than
the cost of simulation runs. This second approach is often described [2], because
it leads to massive parallelization. The problem remains of generating uncorre-
lated and reproducible sequences of random numbers on processors.
Finally, the validation of simulation models may require a sensitivity analysis.
Sensitivity analysis consists in assessing how the variation in the output of a
model can be apportioned, qualitatively or quantitatively, to different sources of
variation in the input. It provides an understanding of how the output variables
respond to changes in the input variables, and how to calibrate the data used.
Exploration of input space may require a considerable amount of time, and may
be difficult to perform in practice. Aggregation and structuring of results con-
sume time and disk space. Now, a sequence of simulations using different input
sets could be automated and parallelized. The synthesis of final outputs need the
cooperation of all processors. This third level of parallelism is described in [4],
however often unreachable for costly simulations. As far as we know, no example
of combining these different levels of parallelism appears in the literature.

7 Parallel Algorithm

Most recent parallel architectures contain a large number of SMP nodes con-
nected by a fast network. The hybrid programming paradigm combines two lay-
ers of parallelism: implementing OpenMP [11] shared-memory codes within each
SMP node, while using MPI between them. This mixed programming method
allows codes to potentially benefit from loop-level parallelism and from coarse-
grained parallelism. Hybrid codes may also benefit from applications that are
well-suited to take advantage of shared-memory algorithms. We shall evaluate
the three levels of parallelism described above within the framework of such SMP
clusters. Our parallel algorithm is presented in figure 3.
At the first level of parallelism, the process of larvae recruitment can be

distributed (2.2.6 part of the algorithm). A sequence of random numbers is
generated, then the loop considering each larva is split among the processors.
Each OpenMP thread performs an independent computation on a set of larvae.
This fine-grain parallelism is well suited for a shared-memory execution, avoiding
data redundancy and communication latencies.
Suppose we do not use the first level of parallelism; the second level of paral-

lelism means to map simulation runs onto the parallel machine. Typically, each
processor gets several simulation runs, and potentially there is a problem of load
imbalance. However, benchmarks have established that execution times of sim-
ulation runs do not have large variability for a given set of input parameters
of a costly simulation. So, if each processor has the same number of replicates
to carry out, the load is balanced. MPI is used to perform communications. In
fact, the use of OpenMP is not a valuable choice here, because it prevents the



442 M. Langlais et al.

For all simulations a ∈ [1, A] of the sensitivity analysis do in // {
. read input parameters;
. For all simulations runs r ∈ [1, R] do in //
. . compute initial values of state variables;
. . For t:=0 to 366 with a time step of 2 do
. . . update of steps 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5;
. . . parallel update of step 2.2.6; (* OpenMP threads *)
. . . update of steps 2.2.7, 2.2.8;
. . }
. }
. gather outputs of simulation a (MPI collective communication);
}
print outputs;

Fig. 3. Parallel algorithm

execution on several SMP nodes. When all simulation runs are finished, a gather
step is performed with a MPI global communication routine.
When performing a sensitivity analysis (third level of parallelism), the exter-

nal loop (a variable) is distributed among sp sets of processors. Each set has m
processors, so the total number of processors is sp × m = P . The values of the a
incices are assigned to the sp sets in a cyclic manner to balance the load. Next, the
values of the r indices are mapped onto m processors. To get a high-quality load-
balancing at the second level, we assume that m divides R. A new potential load
imbalance exists at the third level of parallelism. If we suppose the cost of one
simulation to be a constant, the load will be well balanced only if A divides sp.
A pseudo-random sequence generator is a procedure that starts with a spec-

ified random number seed and generates random numbers. We currently use the
library PRNGlib [10], which provides several pseudo-random number generators
through a common interface on parallel architecture. Common routines are spec-
ified to initialize the generators with appropriate seeds on each processor, and to
generate in particular uniform distributed random vectors. The proposed gen-
erators are successful in most empirical and theoretical tests and have a long
period. They can be quickly computed in parallel, and generate the same ran-
dom sequence independently of the number of processors. This library is used
to generate A×R independent random sequences. It is necessary to make an
adequate number of simulation runs so that the mean and standard deviation of
the wanted statistics fall within the prescribed error at the specified tolerance.
For R=32 and a confidence interval of 95%, the average number of hosts and
parasites is known with a relative error of 2%. This is sufficient for a single sim-
ulation (without the third level of parallelism) and for the sensitivity analysis
on most cases. On the other hand, if a spectral analysis is wanted, R=512 simu-
lation runs are usually performed. The frequency distribution around the mean
is then obtained, and constitutes a significant result of the system dynamic.



Stochastic Simulation of a Marine Host-Parasite System 443

8 Hybrid OpenMP/MPI Parallelization

Simulations have been performed on an IBM SP3. The machine has 28 NH2
nodes (16-way Power 3, 375 Mhz) with 16 GBytes of memory per node; a Colony
switch manages the interconnection of nodes. The code has been developed in
FORTRAN 90 with the XL Fortran compiler and using the MPI message-passing
library (IBM proprietary version). For performance evaluation and analysis, a
representative set of input parameters of a costly simulation were chosen.
First, we evaluate the performances of a single simulation. Let m be the

number of MPI processes (parallelization of the r loop in figure 3), nt be the
number of OpenMP threads within a MPI process, and P = m × nt the number
of processors (sp=1). If R=32, the fine-grain parallelism allows us to use more
processors than the number of replicates. In our experiments, between one and
four OpenMP threads were allocated to compute simulation runs. Figure 4 shows
that the execution times decrease for a given number P of processors and an
increasing number nt of OpenMP threads (e.g. for 32 processors the sequence
m×nt = 32×1, 16×2, 8×4). For these representative results, performances of
the MPI-only code always exceed those of the hybrid code. But, we can use 128
processors for R=32 with the hybrid code. That means execution times of 81 s
on 64 processors and 59,7 s on 128 processors.

Number of Number of MPI processes (m)
threads (nt) 1 4 8 16 32

1 3669,9s 935,3 s 471,3s 238,8s 123,8s

2 2385,5s 609,1s 307,5s 155,9s 81,0s

3 1963,5s 500,3s 252,4s 127,8s 67,3s

4 1745,9s 469,4s 228,1s 119,1s 59,7s
0,0%

20,0%

40,0%

60,0%

80,0%

100,0%

0 32 64 96 128
Number of processors

E
ff

ic
ie

n
cy

without OpenMP 2 OpenMP threads
3 OpenMP threads 4 OpenMP threads

Fig. 4. Execution times and relative efficiency of a simulation for R=32; with m MPI
process, nt threads in each MPI process, using m×nt processors

The OpenMP directives add a loop-level parallelism to the simulator. The
first level of parallelism consists in the parallelization of a loop (step 2.2.6) with
usually many iterations (e.g. 2 × 108). The arrays used inside that loop can be
shared on the node with hybrid programming. But if we consider an MPI version
of this loop-level parallelism, it would imply an overhead due to the communi-
cation of these arrays between processors. Precisely, these communication costs
would be the main overhead of a MPI implementation.
Furthermore, the computation time spent in that loop represents in average

81 % of the sequential execution time tseq. Let Tp = 0, 81 tseq be the portion
of computation time that may be reduced by way of parallelization, and Ts =
0, 19 tseq be the time for the purely sequential part of the program. The Amdhal’s



444 M. Langlais et al.

law says, that for n processors the computation time is T (n)=Ts+
Tp

n . Therefore,
the parallel efficiency should be equal theoretically to 84 % for 2 processors
(the effective performance is shown on figure 4, m = 1, nt = 2) and to 64 %
for 4 processors (m = 1, nt = 4). These efficiencies are, in fact, upper limits.
They induce a quickly decreasing efficiency for one to several OpenMP threads
(nt). A version of our code using POSIX threads was tested and gave the same
performances as OpenMP did. In our case, for one parallel loop, there is no
overhead between the OpenMP version compared to the POSIX version.
The combination of the first two levels of parallelism were described. In the

following, we will focus on the use of the second and third levels, excluding
the first one. Each set of processors is not carrying out the same number of
simulations. In figure 5, performances of two sensitivity analysis are presented
with A=15, A=41.

A=15 Number of processor sets (sp)

1 2 4 16

P =32
1677s
100,0%

1725s
97,2%

1754s
95,6%

1697s
98,8%

P =64 – 897s
93,5%

861s
97,4%

861s
97,4%

P =128 – – 445s
94,2%

438s
95,7%

P =256 – – – 223s
94,0%

A=41 Number of processor sets (sp)

1 2 4 16

P =32
4444s
100,0%

4607s
96,5%

4531s
98,1%

5438s
81,7%

P =64 – 2319s
95,8%

2298s
96,7%

2566s
86,6%

P =128 – – 1197
92,8%

1344s
82,6%

P =256 – – – 682s
81,4%

Fig. 5. Execution times and relative efficiency of two sensitivity analysis with A=15
and A=41; we use P =sp×m processors with R=32

The number of processors in one set is at most R=32; we deduce that the
maximum number of processors is then sp×R (impossible configurations are
denoted by a minus sign in the tables). For a sensitivity analysis, note that
the time is roughly divided by two when the number of processors doubles. For
up to 256 processors, really costly simulations can be run with a good parallel
efficiency; we can conclude that our implementation is scalable. Nevertheless,
efficiency seems lower for A=41 and sp=16. Assume run-times of simulation
runs are close to rts. The sequential complexity comes to A×R × rts. With the
cyclic distribution at the third level, the parallel cost is given by P×�A/sp�×(R×
rts/m). This implies an efficiency lower than A/(sp×�A/sp�). For A=41, sp=16,
the parallel efficiency is then theoretically limited up to 85%. The assumption
of equal execution times is approximate, but it explains why performances for
A = 41, sp = 16 are not so good. However, an expensive sensitivity analysis
(A=41) spends less than 12 minutes on 256 processors.

9 Biological Results

The results given by the new stochastic and the deterministic simulators come
from two distinct computation methods. Both are based on a single bio-mathe-



Stochastic Simulation of a Marine Host-Parasite System 445

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 40 80 120 160 200 240 280 320 360
days

N
u

m
b

er
 o

f 
h

o
st

s

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

N
u

m
b

er
 o

f 
p

ar
as

it
es

Number of hosts (deterministic)
Number of hosts (stochastic)
Number of parasites (deterministic)
Number of parasites (stochastic)

Fig. 6. Experiment with temporary en-
demic state at the end of simulation

-80,0%

-60,0%

-40,0%

-20,0%

0,0%

20,0%

40,0%

-2
5%

-2
0%

-1
5%

-1
0% -5
% 0% 5% 10
%

15
%

20
%

25
%

variation for one parameter of x%

va
ri

at
io

n
 f

o
r 

th
e 

fi
n

al
 

n
u

m
b

er
 o

f 
h

o
st

s

SDUDPHWHU��GHDWK�UDWH�RI�SDUDVLWHV

SDUDPHWHU��WUDQVPLVVLRQ�UDWH�RI�ODUYDH�RQ�KRVWV

SDUDPHWHU��H[WHUQDO�VXSSO\�RI�ODUYDH

SDUDPHWHU��PD[LPXP�QXPEHU�RI�SDUDVLWHV�EHIRUH�DJJUHJDWLRQ

Fig. 7. Sensitivity analysis for 41 sets of
input parameters

matical model and then outputs should not be very different. In fact, similarities
are clearly observed, the number of hosts and parasites are given for one exper-
iment in figure 6. For the stochastic simulation, the mean of R=400 simulation
runs is given. For some parameter values, variations are observed between the
two simulators. We already know that some interactions in the host-parasite
system cannot be reproduced in the deterministic simulator (without modeling
at a finer scale). Figure 7 corresponds to one result of the sensitivity analysis
introduced in figure 5 (A=41); the intersection point (0%,0%) corresponds to a
reference simulation. It shows the variation in percentage of the final number of
hosts depending on the variation of four distinct input parameters. We conclude
that the system is very sensitive to the death rate of parasites.

10 Conclusion

For similar outputs, a complete and costly stochastic simulation of the host-
parasite system lasts only 1 minute on 128 processors versus 28 minutes for the
deterministic simulation. A performance analysis has established the efficiency
and the scalability of the stochastic algorithm using three levels of parallelism.
The hybrid implementation allows us to use more processors than the number
of simulation runs. The stochastic simulation gives the frequency distribution
around the mean for outputs, providing new insights into the system dynamics.
The sensitivity analysis, requiring several series of simulations is now accessible.
An expensive sensitivity analysis spends less than 12 minutes on 256 processors.

References

1. M. Bernaschi, F. Castiglione, and S. Succi. A parallel algorithm for the simula-
tion of the immune response. In WAE’97 Proceedings: Workshop on Algorithm
Engineering, Venice Italy, September 1997.



446 M. Langlais et al.

2. M.W. Berry and K.S. Minser. Distributed Land-Cover Change Simulation Using
PVM and MPI. In Proc. of the Land Use Modeling Workshop, 1997, June 1997.

3. C. Bouloux, M. Langlais, and P. Silan. A marine host-parasite model with direct
biological cycle and age structure. Ecological Modelling, 107:73–86, 1998.

4. M. Flechsig. Strictly parallelized regional integrated numeric tool for simulation.
Technical report, Postdam Institue for Climate Impact Reasearch, Telegrafenberg,
D-14473 Postdam, 1999.

5. M. Langlais, G. Latu, J. Roman, and P. Silan. Parallel numerical simulation of
a marine host-parasite system. In P. Amestoy, P. Berger, M. Daydé, I. Duff,
V. Frayssé, L. Giraud, and D. Ruiz, editors, Europar’99 Parallel Processing, pages
677–685. LNCS 1685 - Springer Verlag, 1999.

6. M. Langlais and P. Silan. Theoretical and mathematical approach of some regula-
tion mechanisms in a marine host-parasite system. Journal of Biological Systems,
3(2):559–568, 1995.

7. G. Latu. Solution parallèle pour un problème de dynamique de population. Tech-
nique et Science Informatiques, 19:767–790, June 2000.

8. H. Lorek and M. Sonnenschein. Using parallel computers to simulate individual-
oriented models in ecology: a case study. In Proceedings: ESM’95 European Simu-
lation Multiconference, Prag, June 1995.

9. B. Maniatty, B. Szymanski, and T. Caraco. High-performance computing tools
for modeling evolution in epidemics. In Proc. of the 32nd Hawaii International
Conference on System Sciences, 1999.

10. N. Masuda and F. Zimmermann. PRNGlib : A Parallel Random Number Generator
Library, 1996. TR-96-08, ftp://ftp.cscs.ch/pub/CSCS/libraries/PRNGlib/.

11. OpenMP. A Proposed Industry Standard API for Shared Memory Programming.
October 1997, OpenMP Forum, http://www.openmp.org/.

12. P. Silan, M. Langlais, and C. Bouloux. Dynamique des populations et
modélisation : Application aux systèmes hôtes-macroparasites et à l’épidémiologie
en environnement marin. In C.N.R.S eds, editor, Tendances nouvelles en
modélisation pour l’environnement. Elsevier, 1997.


	1 Introduction
	2 Description of the Biological Background
	3 Deterministic Numerical Simulation
	4 Stochastic Model of Host-Parasite Interactions
	5 Stochastic Algorithm
	6 Multilevel Parallelism for Stochastic Simulations 
	7 Parallel Algorithm
	8 Hybrid OpenMP/MPI Parallelization
	9 Biological Results
	10 Conclusion
	References

