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Abstract. Forest fire propagation modeling has typically been included within 
the category of grand challenging problems due to its complexity and to the 
range of disciplines that it involves. The high degree of uncertainty in the input 
parameters required by the fire models/simulators can be approached by apply-
ing optimization techniques, which, typically involve a large number of simula-
tion executions, all of which usually require considerable time. Distributed 
computing systems (or metacomputers) suggest themselves as a perfect plat-
form to addressing this problem.  We focus on the tuning process for the ISStest 
fire simulator input parameters on a distributed computer environment managed 
by Condor. 

1   Introduction 

Grand Challenge Applications (GCA) address fundamental computation-intensive 
problems in science and engineering that normally involves several disciplines.  For-
est fire propagation modeling/simulation is a relevant example of GCA; it involves 
several features from different disciplines such as meteorology, biology, physics, 
chemistry or ecology. However, due to a lack of knowledge in most of the phases of 
the modeling process, as well as the high degree of uncertainty in the input parame-
ters, in most cases the results provided by the simulators do not match real fire propa-
gation and, consequently, the simulators are not useful since their predictions are not 
reliable. One way of overcoming these problems is that of using a method external to 
the model that allows us to rectify these deficiencies, such as, for instance, optimiza-
tion techniques. In this paper, we address the challenge of calibrating the input values 
of a forest fire propagation simulator on a distributed computing environment man-
aged by Condor [1] (a software system that runs on a cluster of workstations in order 
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to harness wasted CPU cycles from a group of machines called a Condor pool). A 
Genetic Algorithm (GA) scheme has been used as optimization strategy. In order to 
evaluate the improvement provided by this optimization strategy, its results have been 
compared against a Pure Random Search. 

The rest of this paper is organized as follows. In section 2, the main features of 
forest fire propagation models are reported. Section 3 summarizes the experimental 
results obtained and, finally, section 4 presents the main conclusions. 

2   Forest Fire Propagation Model 

Classically, there are two ways of approaching the modeling of forest fire spread. 
These two alternatives essentially differ from one other in their degree of scaling. On  
one hand, we refer to local models when one small unit  (points, sections, arcs, cells, 
...) is considered as the propagation entity. These local models take into account the 
particular conditions (vegetation, wind, moisture, ...) of each entity and also of its 
neighborhood in order to calculate its evolution. On the other hand, as a propagation 
entity, global models consider the fire line view as a whole unit (geometrical unit) 
that evolves in time and space.  

The basic cycle of a forest fire simulator involves the execution of both local and 
global models. On the basis of an initial fire front and simulating the path for a certain 
time interval, the result expected from the simulator is the new situation of the real 
fire line, once the said time has passed. Many factors influence the translation of the 
fire line. Basically, these factors can be grouped into three primary groups of inputs: 
vegetation features, meteorological and topographical aspects. The parameter that 
possibly provides the most variable influence on fire behavior is the wind [2].  The 
unpredictable nature of wind caused by the large number of its distinct classes and 
from its ability to change both horizontal and vertical direction, transforms it into one 
of the key points in the area of fire simulation. In this work, we focus on overcoming 
wind uncertainty regardless of the model itself and of the rest of the input parameters, 
which are assumed to be correct. The ISStest forest fire simulator [3], which incorpo-
rates the Rothermel model [4] as a local model and the global model defined by 
André and Viegas in [5], has been used as a working package for forest fire simula-
tion.  

3   Experimental Study 

The experiments reported in this section were executed on a Linux cluster composed 
of 21 PC´s connected to a Fast Ether Net 100 Mb.  All the machines were configured 
to use NFS (Network File System) and the Condor system; additionally, PVM were 
installed on every machine. The ISStest forest fire simulator assumes that the wind 
remains fixed during the fire-spread simulation process; consequently, it only consid-

ers two parameters in quantifying this element: wind speed ( sw ) and wind direction 
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( dw ). We refer to the two-component vector represented by ( )ds ww=θ  as a static 

wind vector. However, in order to be more realistic, we have also considered a differ-
ent scenario where in which the wind vector changes over time. The new wind vector 
approach will be referred to as a dynamic wind vector and is represented as follows: 

( ))1()1(221100 ...... −−= tdtsdsdsds wwwwwwwwθ  (1) 

where t corresponds to the number of wind changes considered. In order to tune these 
values as closely as possible to their optimum values, a Genetic Algorithm (GA) [6] 
as optimization technique has been applied. We also conducted the same set of ex-
periments using a Pure Random approach to optimize the wind vector parameters in 
order to have a reference point for measuring the improvement provided by GA. The 
real fire line, which was used as a reference during the optimization process, was 
obtained in a synthetic manner for both the static and dynamic scenarios. Further-
more, we used the Hausdorff distance [7], which measures the degree of mismatch 
between two sets of points, in our case the real and simulated fire line, to measure the 
quality of the results.  

For optimization purposes, the Black-Box Optimization Framework (BBOF) [8] 
was used. BBOF was implemented in a plug&play fashion, where both the optimized 
function and optimization technique can easily be changed. This optimization frame-
work works in an iterative fashion, moving step-by-step from an initial set of guesses 
about the vector θ  to a final value that is expected to be closer to the optimal vector 
of parameters than were the initial guesses. This goal is achieved because, at each 
iteration (or evaluation) of this process, the preset optimization technique (GA or 
Pure Random) is applied to generate a new set of guesses that should be better than 
the previous set. 

We will now outline some preliminary results obtained on both the static and dy-
namic wind vector scenarios. 

3.1 Static Wind Vector 

As is well known, GA’s need to be tuned in order to ensure maximum exploitation. 
Therefore, previous to the fire simulation experimental study, we conducted a tuning 
process on the GA, taking into account the particular characteristics of our problem. 
Since the initial set of guesses used as inputs by the optimization framework (BBOF) 
were obtained in a random way, we conducted 5 different experiments and the corre-
sponding results were averaged. Table 1 shows the Hausdorff distance, on average, 
obtained for both strategies (GA and Random). As can be observed, GA provides 
considerable improvement in results compared to the case in which no optimization 
strategy has been applied.  

In the following section, we will outline some preliminary results obtained on the 
dynamic wind vector scenario. 
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Table 1. Final Haussdorf distance (m.) obtained by GA and a Pure Random scheme under the 
static wind vector scenario. 

Algorithm Genetic Random 
Hausdorff dist. (m) 11 147,25 
Evaluations 200 200 

3.2 Dynamic Wind Vector 

Two different experiments were carried out in order to analyze the dynamic wind 
vector scenario. In the first study, the wind changes were supposed to occur twice, the 
first change after 15 minutes with the second change coming 30 minutes later. There-
fore, the vector to be optimized will include 4 parameters and is represented by: 

( )2211 dsds wwww=θ . In the second case, three change instants have been consid-

ered, each separated from the next by 15 minutes. Consequently, the vector to be 
optimized will be: ( )332211 dsdsds wwwwww=θ . In both cases, the optimization 

process was run 5 times with different initial sets of guesses and, for each one, 20000 
evaluations had been executed. Table 2 shows the Hausdorff distance, on average, for 
GA and Random strategies and for both dimensions setting for the dynamic wind 
vector. We observe that the results obtained when the vector dimension is 6 are worse 
than those obtained for dimension 4. Although the number of evaluations has been 
increased by two orders of magnitude with respect to the experiment performed when 
the wind vector was considered as static, the results are considerably poorer in the 
case of the dynamic wind vector. 

As can be observed in table 2, GA provides a final Hausdorff distance, on average, 
which, in the case of a tuned vector composed of 4 components, is five times better 
than that provided by the Random approach, which represents the case in which no 
external technique is applied. In the other tested case (6 components), we also ob-
served improvements in the results. Therefore, and for this particular set of experi-
ments, we have determined that GA is a good optimization technique in overcoming 
the uncertainty input problem presented by forest fire simulators. Since the improve-
ment shown by this approach is based on the execution of a large number of simula-
tions, the use of a distributed platform to carry out the experiments was crucial. 

Table 2. Final Haussdorf distance (m.) obtained by GA and a Pure Random scheme under the 
dynamic wind vector scenario for 4 and 6 vector dimensions and after 20000 objective function 
evaluations 

Parameters 4 6 
Random 97.5 103.5 
Genetic 18.8 84.75 
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4   Conclusions 

Forest fire propagation is evidently a challenging problem in the area of simulation. 
Uncertainties in the input variables needed by the fire propagation models (tempera-
ture, wind, moisture, vegetational features, topographical aspects...) can play a sub-
stantial role in producing erroneous results, and must be considered. For this reason, 
we have provided optimization methodologies to adjust the set of input parameters for 
a given model, in order to obtain results that are as close as possible to real values.  

In general, it has been observed that better results are obtained by the application 
of some form of optimization technique in order to rectify deficiency in wind fields, 
or in their data, than by not applying any method at all. The method applied in our 
experimental study was that of GA. In the study undertaken, we would draw particu-
lar attention to that fact that, in order to emulate the real behavior of wind once a fire 
has started, and in order to attain results that can be extrapolated to possible future 
emergencies, a great number of simulations need to be carried out. Since these simu-
lations do not have any response-time requirements, these applications are perfectly 
suited to distributed environments (metacomputers), in which it is possible to have 
access to considerable computing power over long periods of time 
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