

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 481–485.
 Springer-Verlag Berlin Heidelberg 2002

Increasing Instruction-Level Parallelism
with Instruction Precomputation

Joshua J. Yi, Resit Sendag, and David J. Lilja

Department of Electrical and Computer Engineering
Minnesota Supercomputing Institute

University of Minnesota - Twin Cities
Minneapolis, MN 55455

{jjyi, rsgt, lilja}@ece.umn.edu

Abstract. Value reuse improves a processor’s performance by dynamically
caching the results of previous instructions and reusing those results to bypass
the execution of future instructions that have the same opcode and input oper-
ands. However, continually replacing the least recently used entries could even-
tually fill the value reuse table with instructions that are not frequently exe-
cuted. Furthermore, the complex hardware that replaces entries and updates the
table may necessitate an increase in the clock period. We propose instruction
precomputation to address these issues by profiling programs to determine the
opcodes and input operands that have the highest frequencies of execution.
These instructions then are loaded into the precomputation table before the
program executes. During program execution, the precomputation table is used
in the same way as the value reuse table is, with the exception that the precom-
putation table does not dynamically replace any entries. For a 2K-entry pre-
computation table implemented on a 4-way issue machine, this approach pro-
duced an average speedup of 11.0%. By comparison, a 2K-entry value reuse
table produced an average speedup of 6.7%. Instruction precomputation outper-
forms value reuse, especially for smaller tables, with the same number of table
entries while using less area and having a lower access time.

1 Introduction

A program may repeatedly perform the same computations during the course of its
execution. For example, in a nested pair of FOR loops, an add instruction in the inner
loop will repeatedly initialize and increment a loop induction variable. For each itera-
tion of the outer loop, the computations performed by that add instruction are exactly
identical. An optimizing compiler typically cannot remove these operations since the
induction variable’s initial value may change for each iteration.

Value reuse [3, 4] exploits this program characteristic by dynamically caching an
instruction’s opcode, input operands, and result into a value reuse table (VRT). For
each instruction, the processor checks if its opcode and input operands match an entry
in the VRT. If a match is found, then the processor can use the result stored in the
VRT instead of re-executing the instruction.

482 J.J. Yi, R. Sendag, and D.J. Lilja

Since the processor constantly updates the VRT, a redundant computation could be
stored in the VRT, evicted, re-executed, and re-stored. As a result, the VRT could
hold redundant computations that have a very low frequency of execution, thus de-
creasing the effectiveness of this mechanism.

To address this frequency of execution issue, instruction precomputation uses pro-
filing to determine the redundant computations with the highest frequencies of execu-
tion. The opcodes and input operands for these redundant computations are loaded
into the precomputation table (PT) before the program executes. During program
execution, the PT functions like a VRT, but with two key differences: 1) The PT
stores only the highest frequency redundant computations, and 2) the PT does not
replace or update any entries. As a result, this approach selectively targets those re-
dundant computations that have the largest impact on the program’s performance.

This paper makes the following contributions:

1. It shows that a large percentage of a program is spent repeatedly executing a
handful of redundant computations.

2. It describes a novel approach of using profiling to improve the performance
and decrease the cost (area, cycle time, and ports) of value reuse.

2 Instruction Precomputation

Instruction precomputation consists of two main steps: profiling and execution. The
profiling step determines the redundant computations with the highest frequencies of
execution. An instruction is a redundant computation if its opcode and input operands
match a previously executed instruction’s opcode and input operands.

After determining the highest frequency redundant computations, those redundant
computations are loaded into the PT before the program executes. At run-time, the PT
is checked to see if there is a match between a PT entry and the instruction’s opcode
and input operands. If a match is found, then the instruction’s output is simply the
value in the output field of the matching entry. As a result, that instruction can bypass
the execute stage. If a match is not found, then the instruction continues through the
pipeline as normal.

For instruction precomputation to be effective, the high frequency redundant com-
putations have to account for a significant percentage of the program’s instructions.
To determine if this is the situation in typical programs, we profiled selected bench-
marks from the SPEC 95 and SPEC 2000 benchmark suites using two different input
sets (“A” and “B”) [2]. For this paper, all benchmarks were compiled using the gcc
compiler, version 2.6.3 at optimization level O3 and were run to completion.

To determine the amount of redundant computation, we stored each instruction’s
opcode and input operands (hereafter referred to as a “unique computation”). Any
unique computation that has a frequency of execution greater than one is a redundant
computation. After profiling each benchmark, the unique computations were sorted
by their frequency of execution. Figure 1 shows the percentage of the total dynamic
instructions that were accounted for by the top 2048 unique computations. (Only

Increasing Instruction-Level Parallelism with Instruction Precomputation 483

arithmetic instructions are shown here because they are the only instructions that we
allowed into the PT.) As can be seen in Figure 1, the top 2048 arithmetic unique
computations account for 14.7% to 44.5% (Input Set A) and 13.9% to 48.4% (B) of
the total instructions executed by the program.

Fig 1. Percentage of the Total Dynamic Instructions Due to the Top 2048 Arithmetic Unique
Computations

3 Results and Analysis

To determine the performance of instruction precomputation, we modified sim-
outorder from the Simplescalar tool suite [1] to include a precomputation table. The
PT can be accessed in both the dispatch and issue stages. In these two stages, the
current instruction’s opcode and input operands are compared against the opcode and
input operands that are stored in the PT. If a match is found in the dispatch stage, the
instruction obtains its result from the PT and is removed from the pipeline (i.e. it
waits only for in-order commit to complete its execution). If a match is found in the
issue stage, the instruction obtains its result from the PT and is removed from the
pipeline only if a free functional unit cannot be found. Otherwise, the instruction
executes as normal.

The base machine was a 4-way issue processor with 2 integer and 2 floating-point
ALUs; 1 integer and 1 floating-point multiply/divide unit; a 64 entry RUU; a 32 entry
LSQ; and 2 memory ports. The L1 D and I caches were set to 32KB, 32B blocks, 2-
way associativity, and a 1 hit cycle latency. The L2 cache was set to 256KB, 64B
blocks, 4-way associativity, and a 12 cycle hit latency. The memory latency of the
first block was 60 cycles while each following block took 5 cycles. The branch pre-
dictor was a combined predictor with 8K entries.

To reiterate one key point, the profiling step is used only to determine the highest
frequency unique computations. Since it is extremely unlikely that the same input set
that is used for profiling also will be used during execution, we simulate a combina-
tion of input sets, that is, we profile the benchmark using one input set, but run the
benchmark with another input set (i.e. Profile A, Run B or Profile B, Run A).

Figure 2 shows the speedup of instruction precomputation as compared to the base
machine for Profile B, Run A. We see that instruction precomputation improves the

0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

om
pr

es
s

13
0.l

i

13
2.i

jpe
g

13
4.p

er
l

16
4.g

zip

17
5.v

pr

17
7.m

es
a

18
1.m

cf

18
3.e

qu
ak

e

18
8.a

mmp

19
7.p

ar
se

r

25
5.v

or
tex

30
0.t

wolf

B e n c h m a r k

P
er

ce
n

t
o

f
T

o
ta

l I
n

st
r

In p u t S e t A

In p u t S e t B

484 J.J. Yi, R. Sendag, and D.J. Lilja

performance of all benchmarks by an average of 4.1%− 11.0% (16 to 2048 entries).
Similar results also occur for the Profile A, Run B combination. These results show
that the highest frequency unique computations are common across benchmarks and
are not a function of the input set.

Fig 2. Percent Speedup Due To Instruction Precomputation for Various Table Sizes;
Profile Input Set B, Run Input Set A

Fig 3: Speedup Comparison Between Value Reuse (VR) and Instruction Precomputa-
tion (IP) for Various Table Sizes; Profile Input Set A, Run Input Set B

In addition to having a lower area and access time, instruction precomputation also
outperforms value reuse for tables of similar size. Figure 3 shows the speedup of
instruction precomputation and value reuse, as compared to the base machine, for
three different table sizes. For almost all table sizes and benchmarks, instruction pre-
computation yields a higher speedup than value reuse does. A more detailed compari-
son of instruction precomputation and value reuse can be found in [5].

4 Related Work

Sodani and Sohi [4] found speedups of 6% to 43% for a 1024 entry dynamic value
reuse mechanism. While their speedups are comparable to those presented here, our
approach has a smaller area footprint and a lower access time.

0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

om
pr

es
s

13
0.l

i

13
2.i

jpe
g

13
4.p

er
l-J

um
ble

13
4.p

er
l-P

rim
es

16
4.g

zip

17
5.v

pr
-P

lac
e

17
5.v

pr
-R

ou
te

17
7.m

es
a

18
1.m

cf

18
3.e

qu
ak

e

18
8.a

mmp

19
7.p

ar
se

r

25
5.v

or
tex

30
0.t

wolf

Ave
rag

e

B e n c h m a r k

P
er

ce
n

t
S

p
ee

d
u

p

1 6

3 2

6 4

1 2 8

2 5 6

5 1 2

1 0 2 4

2 0 4 8

0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

om
pr

es
s

13
0.l

i

13
2.i

jpe
g

13
4.p

er
l-J

um
ble

13
4.p

er
l-P

rim
es

16
4.g

zip

17
5.v

pr
-P

lac
e

17
5.v

pr
-R

ou
te

17
7.m

es
a

18
1.m

cf

18
3.e

qu
ak

e

18
8.a

mmp

19
7.p

ar
se

r

25
5.v

or
tex

30
0.t

wolf

Ave
ra

ge

B e n c h m a r k

P
er

ce
n

t
S

p
ee

d
u

p

3 2 V R

2 5 6 V R

2 0 4 8 V R

3 2 IP

2 5 6 IP

2 0 4 8 IP

Increasing Instruction-Level Parallelism with Instruction Precomputation 485

Molina et. al. [3] implemented a dynamic value reuse mechanism that exploited
value reuse at the both the global (PC-independent) and local levels (PC-dependent).
However, their approach is very area-intensive and their speedups are tied to the area
used. For instance, for a realistic 36KB table size, the average speedup was 7%.

5 Conclusion

This paper presents a novel approach to value reuse that we call instruction precom-
putation. This approach uses profiling to determine the unique computations with the
highest frequencies of execution. These unique computations are preloaded into the
PT before the program begins execution. During execution, for each instruction, the
opcode and input operands are compared to the opcodes and input operands in the
PT. If there is a match, then the instruction is removed from the pipeline. For a 2048
entry PT, this approach produced an average speedup of 11.0%. Furthermore, the
speedup for instruction precomputation is greater than the speedup for value reuse for
almost all benchmarks and table sizes. Instruction precomputation also consumes less
area and has a lower table access time as compared to value reuse.

Acknowledgements

This work was supported in by National Science Foundation grants EIA-9971666 and
CCR-9900605, by IBM, and by the Minnesota Supercomputing Institute.

References

1. D. Burger and T. Austin; “The Simplescalar Tool Set, Version 2.0”; University of Wis-
consin Computer Sciences Department Technical Report 1342.

2. A. KleinOsowski, J. Flynn, N. Meares, and D. Lilja; "Adapting the SPEC 2000 Bench-
mark Suite for Simulation-Based Computer Architecture Research"; Workload Charac-
terization of Emerging Computer Applications, L. Kurian John and A. M. Grizzaffi May-
nard (eds.),Kluwer Academic Publishers, (2001) 83-100

3. C. Molina, A. Gonzalez, and J. Tubella; "Dynamic Removal of Redundant Computa-
tions"; International Conference on Supercomputing, (1999)

4. A. Sodani and G. Sohi; "Dynamic Instruction Reuse"; International Symposium on Com-
puter Architecture, (1997)

5. J. Yi, R. Sendag, and D. Lilja; " Increasing Instruction-Level Parallelism with Instruction
Precomputation "; University of Minnesota Technical Report: ARCTiC 02-01

	1 Introduction
	2 Instruction Precomputation
	3 Results and Analysis
	4 Related Work
	5 Conclusion
	Acknowledgements
	References

