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Abstract. Value reuse improves a processor’s performance by dynamically 
caching the results of previous instructions and reusing those results to bypass 
the execution of future instructions that have the same opcode and input oper-
ands. However, continually replacing the least recently used entries could even-
tually fill the value reuse table with instructions that are not frequently exe-
cuted. Furthermore, the complex hardware that replaces entries and updates the 
table may necessitate an increase in the clock period. We propose instruction 
precomputation to address these issues by profiling programs to determine the 
opcodes and input operands that have the highest frequencies of execution. 
These instructions then are loaded into the precomputation table before the 
program executes. During program execution, the precomputation table is used 
in the same way as the value reuse table is, with the exception that the precom-
putation table does not dynamically replace any entries. For a 2K-entry pre-
computation table implemented on a 4-way issue machine, this approach pro-
duced an average speedup of 11.0%. By comparison, a 2K-entry value reuse 
table produced an average speedup of 6.7%. Instruction precomputation outper-
forms value reuse, especially for smaller tables, with the same number of table 
entries while using less area and having a lower access time. 

1   Introduction 

A program may repeatedly perform the same computations during the course of its 
execution. For example, in a nested pair of FOR loops, an add instruction in the inner 
loop will repeatedly initialize and increment a loop induction variable. For each itera-
tion of the outer loop, the computations performed by that add instruction are exactly 
identical. An optimizing compiler typically cannot remove these operations since the 
induction variable’s initial value may change for each iteration. 

Value reuse [3, 4] exploits this program characteristic by dynamically caching an 
instruction’s opcode, input operands, and result into a value reuse table (VRT). For 
each instruction, the processor checks if its opcode and input operands match an entry 
in the VRT. If a match is found, then the processor can use the result stored in the 
VRT instead of re-executing the instruction. 
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Since the processor constantly updates the VRT, a redundant computation could be 
stored in the VRT, evicted, re-executed, and re-stored. As a result, the VRT could 
hold redundant computations that have a very low frequency of execution, thus de-
creasing the effectiveness of this mechanism. 

To address this frequency of execution issue, instruction precomputation uses pro-
filing to determine the redundant computations with the highest frequencies of execu-
tion. The opcodes and input operands for these redundant computations are loaded 
into the precomputation table (PT) before the program executes. During program 
execution, the PT functions like a VRT, but with two key differences: 1) The PT 
stores only the highest frequency redundant computations, and 2) the PT does not 
replace or update any entries. As a result, this approach selectively targets those re-
dundant computations that have the largest impact on the program’s performance. 

This paper makes the following contributions: 
 

1. It shows that a large percentage of a program is spent repeatedly executing a 
handful of redundant computations. 

2. It describes a novel approach of using profiling to improve the performance 
and decrease the cost (area, cycle time, and ports) of value reuse. 

2   Instruction Precomputation 

Instruction precomputation consists of two main steps: profiling and execution. The 
profiling step determines the redundant computations with the highest frequencies of 
execution. An instruction is a redundant computation if its opcode and input operands 
match a previously executed instruction’s opcode and input operands. 

After determining the highest frequency redundant computations, those redundant 
computations are loaded into the PT before the program executes. At run-time, the PT 
is checked to see if there is a match between a PT entry and the instruction’s opcode 
and input operands. If a match is found, then the instruction’s output is simply the 
value in the output field of the matching entry. As a result, that instruction can bypass 
the execute stage. If a match is not found, then the instruction continues through the 
pipeline as normal. 

For instruction precomputation to be effective, the high frequency redundant com-
putations have to account for a significant percentage of the program’s instructions. 
To determine if this is the situation in typical programs, we profiled selected bench-
marks from the SPEC 95 and SPEC 2000 benchmark suites using two different input 
sets (“A” and “B”) [2].  For this paper, all benchmarks were compiled using the gcc 
compiler, version 2.6.3 at optimization level O3 and were run to completion. 

To determine the amount of redundant computation, we stored each instruction’s 
opcode and input operands (hereafter referred to as a “unique computation”). Any 
unique computation that has a frequency of execution greater than one is a redundant 
computation. After profiling each benchmark, the unique computations were sorted 
by their frequency of execution. Figure 1 shows the percentage of the total dynamic 
instructions that were accounted for by the top 2048 unique computations. (Only 
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arithmetic instructions are shown here because they are the only instructions that we 
allowed into the PT.) As can be seen in Figure 1, the top 2048 arithmetic unique 
computations account for 14.7% to 44.5% (Input Set A) and 13.9% to 48.4% (B) of 
the total instructions executed by the program. 
 

Fig 1. Percentage of the Total Dynamic Instructions Due to the Top 2048 Arithmetic Unique 
Computations  

3   Results and Analysis 

To determine the performance of instruction precomputation, we modified sim-
outorder from the Simplescalar tool suite [1] to include a precomputation table. The 
PT can be accessed in both the dispatch and issue stages. In these two stages, the 
current instruction’s opcode and input operands are compared against the opcode and 
input operands that are stored in the PT. If a match is found in the dispatch stage, the 
instruction obtains its result from the PT and is removed from the pipeline (i.e. it 
waits only for in-order commit to complete its execution). If a match is found in the 
issue stage, the instruction obtains its result from the PT and is removed from the 
pipeline only if a free functional unit cannot be found. Otherwise, the instruction 
executes as normal. 

The base machine was a 4-way issue processor with 2 integer and 2 floating-point 
ALUs; 1 integer and 1 floating-point multiply/divide unit; a 64 entry RUU; a 32 entry 
LSQ; and 2 memory ports. The L1 D and I caches were set to 32KB, 32B blocks, 2-
way associativity, and a 1 hit cycle latency. The L2 cache was set to 256KB, 64B 
blocks, 4-way associativity, and a 12 cycle hit latency. The memory latency of the 
first block was 60 cycles while each following block took 5 cycles. The branch pre-
dictor was a combined predictor with 8K entries. 

To reiterate one key point, the profiling step is used only to determine the highest 
frequency unique computations. Since it is extremely unlikely that the same input set 
that is used for profiling also will be used during execution, we simulate a combina-
tion of input sets, that is, we profile the benchmark using one input set, but run the 
benchmark with another input set (i.e. Profile A, Run B or Profile B, Run A). 

Figure 2 shows the speedup of instruction precomputation as compared to the base 
machine for Profile B, Run A. We see that instruction precomputation improves the 

0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

om
pr

es
s

13
0.l

i

13
2.i

jpe
g

13
4.p

er
l

16
4.g

zip

17
5.v

pr

17
7.m

es
a

18
1.m

cf

18
3.e

qu
ak

e

18
8.a

mmp

19
7.p

ar
se

r

25
5.v

or
tex

30
0.t

wolf

B e n c h m a r k

P
er

ce
n

t 
o

f 
T

o
ta

l I
n

st
r

In p u t S e t  A

In p u t S e t  B



484      J.J. Yi, R. Sendag, and D.J. Lilja 

performance of all benchmarks by an average of 4.1%− 11.0% (16 to 2048 entries). 
Similar results also occur for the Profile A, Run B combination. These results show 
that the highest frequency unique computations are common across benchmarks and 
are not a function of the input set. 
 

Fig 2. Percent Speedup Due To Instruction Precomputation for Various Table Sizes; 
Profile Input Set B, Run Input Set A 

Fig 3: Speedup Comparison Between Value Reuse (VR) and Instruction Precomputa-
tion (IP) for Various Table Sizes; Profile Input Set A, Run Input Set B  

In addition to having a lower area and access time, instruction precomputation also 
outperforms value reuse for tables of similar size.  Figure 3 shows the speedup of 
instruction precomputation and value reuse, as compared to the base machine, for 
three different table sizes. For almost all table sizes and benchmarks, instruction pre-
computation yields a higher speedup than value reuse does. A more detailed compari-
son of instruction precomputation and value reuse can be found in [5]. 

4   Related Work 

Sodani and Sohi [4] found speedups of 6% to 43% for a 1024 entry dynamic value 
reuse mechanism. While their speedups are comparable to those presented here, our 
approach has a smaller area footprint and a lower access time. 
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Molina et. al. [3] implemented a dynamic value reuse mechanism that exploited 
value reuse at the both the global (PC-independent) and local levels (PC-dependent). 
However, their approach is very area-intensive and their speedups are tied to the area 
used. For instance, for a realistic 36KB table size, the average speedup was 7%. 

5   Conclusion 

This paper presents a novel approach to value reuse that we call instruction precom-
putation. This approach uses profiling to determine the unique computations with the 
highest frequencies of execution. These unique computations are preloaded into the 
PT before the program begins execution. During execution, for each instruction, the 
opcode and input operands are compared to the opcodes and input operands in the 
PT. If there is a match, then the instruction is removed from the pipeline. For a 2048 
entry PT, this approach produced an average speedup of 11.0%. Furthermore, the 
speedup for instruction precomputation is greater than the speedup for value reuse for 
almost all benchmarks and table sizes. Instruction precomputation also consumes less 
area and has a lower table access time as compared to value reuse. 
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