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Abstract. Trace cache performance is limited by two types of redun-
dancy: duplication and liveness. In this paper, we show that duplication
is not strongly correlated to trace cache performance. Generally, the best-
performing trace caches also introduce the most duplication. The amount
of dead traces is extremely high, ranging from 76% in the smallest trace
cache to 35% in the largest trace cache studied. Furthermore, most of
these dead traces are never used between storing them and replacing
them from the trace cache.

1 Introduction

The performance of wide-issue superscalar processors is limited by the the rate
at which the fetch unit can supply useful instructions. The trace cache [1] can
fetch across multiple control transfers per clock cycle without increasing the
latency of the fetch unit [2]. Fundamental to the operation of the trace cache is
that consecutively executed instructions are copied into consecutive locations,
such that fetching is facilitated.

In this paper, we analyse the relation between redundancy and trace cache
performance. We use the term redundancy to mean those traces and instructions
stored in the trace cache that do not contribute to performance. We consider two
types of redundancy. The first type of redundancy detects multiple copies of
the same instruction and is called duplication. The second type of redundancy
is liveness. Dead traces are redundant (need not be stored in the trace cache),
because they do not contribute to performance. We show in this paper that
liveness is a greater concern in small trace caches than duplication. We study
various ways to build traces and inspect their effect on redundancy.

2 Metrics

After every trace cache access, we make a break-down of the contents of the trace
cache and average this break-down over all accesses. We consider two break-
downs: one to quantify duplication and one to quantify liveness.
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We measure 4 categories to characterise duplication. Unused traces corre-
spond to trace cache frames that are never filled during the execution of the
programs. Fragmentation (frag) is caused by traces shorter than the maximum
length of 16 instructions. Duplicated intructions (dup) are those instructions
for which there is another copy of the same static instruction in the trace cache.
The first copy of each static instruction is present in the category uniq. This
part of the trace cache would also be present in a regular instruction cache.

When studying liveness, we consider following types of traces.Unused traces
are the same as in the previous break-down. Quick-dead traces are never used
between being built and being replaced. Dead traces are stored in the trace
cache but will not be used again before being replaced. Other traces are live.

3 Methodology

We measure the effect of the trace termination policy on duplication and live-
ness. The baseline policy base allows traces to grow up to 16 instructions and
3 branches. The whole blocks policy wb requires that a trace ends in a branch
instruction, unless a basic block is longer than 16 instructions. The backward
branch policy bb terminates traces in a backward branch only. Other variations
are the software trace cache (STC) [3], selective trace storage (STS) [4] and the
combination of STS and STC, abbreviated STCS. STS discriminates between
blue traces that have all their internal branches not-taken and red traces which
contain taken branches. Blue traces can be fetched from the instruction cache in
a single cycle and need not be stored in the trace cache. With STC, the program
is rewritten to bias branches towards not-taken, resulting in more blue traces.

The analysis is performed on 6 SPECint95 benchmarks running training in-
puts. At most 1 billion instructions are simulated per benchmark. We use a
32kB 2-way set-associative instruction cache with 32byte blocks. It can fetch at
most one taken branch and 16 instructions per cycle. We use an MGag multiple
branch predictor with 16K entries and a 2K-entry 4-way set-associative BTB
and a 256-entry RAS. The trace cache size is varied from 32-4096 traces and
is always 4-way set-associative. A trace can hold at most 16 instructions and 3
conditional branches.

4 Analysis

The performance is measured as FIPA: useful number of fetched instructions per
fetch unit access (Figure 1). The performance results follow the trends known
from the literature [3,4,5].

4.1 Duplication in the Trace Cache

The break-down of duplication (Figure 2) shows that unused trace cache frames
only occur often for the biggest trace cache investigated, because for most pro-
grams the number of different traces is around 4K or less.
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Fig. 1. FIPA for the trace cache. The horizontal axis shows the size of the trace cache
expressed in traces.
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Fig. 2. Breakdown of wasted instruction frames in the trace cache.

At least 10% of the trace cache is wasted on fragmentation. The impact
of fragmentation is largely independent of the trace cache size. STS and STCS
reduce fragmentation because red traces are longer than blue traces [4]. The wb
and bb policies increase fragmentation. Because the traces are terminated on all
or some branch instructions, they are a lot shorter than with the base policy.
For this reason, the performance of the wb and bb policies is lower than with
the other policies.
Duplication varies strongly over the different trace termination policies and

trace cache sizes. In the base case, 20% to 50% of the trace cache stores duplicates
of instructions already present in the trace cache. This number is the largest for
the 1K-entry trace cache. For the larger trace cache it is less. Instead, trace cache
frames are left empty. This trend occurs for all trace termination policies.

STS increases duplication over the base policy, e.g.: from 43% to 48% in
the 256-entry trace. Duplication is increased because the STS policy does not
store blue traces but stores red traces instead. The red traces are longer and
hence additional copies of instructions are inserted in the trace cache. This way,
fragmented space is converted into duplicated instructions. When the trace cache
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is very large (e.g.: 4K traces) then the fragmented space is turned into unused
trace frames.

The wb policy reduces duplication but increased fragmentation removes all
benefits. STS is more effective to reduce the number of constructed traces, be-
cause it does not impact the fragmentation.

A large part of the trace cache is wasted, e.g. 60% of the 256-entry trace cache.
This indicates that the trace cache is very inefficient in storing the program: A
trace cache needs to be about 2.5 times as big as an instruction cache to store
the same piece of code.

The trace termination policy influences duplication but not in a straight-
forward way. The best performing policy (STCS in the 1K-entry trace cache)
also has the highest duplication. Therefore, when looking for new techniques to
improve trace cache performance, one should not be concerned with reducing du-
plication per se, because the amount of duplication my increase with increasing
performance, as is the case when using selective trace storage.

4.2 Liveness of Traces

The liveness analysis (Figure 3) shows that the trace cache contains many dead
traces, around 76% for the smallest to 35% for the biggest trace caches. For the
small trace caches, the majority of the dead traces is built but never used. This
part slowly decreases with increasing trace cache size and for the 1K-entry trace
cache, around 50% of the dead traces have never been used since they were built.
This trend is largely independent of the trace termination policy.

In short, the contention in the trace cache is very high and most of the traces
are dead. It is therefore worthwhile to consider not storing some traces, as these
traces will not be used. In fact, STS gains performance this way.
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Fig. 3. Breakdown of life and dead traces.
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5 Conclusion

This paper studies duplication and liveness under several optimisations. Dupli-
cation occurs frequently, e.g.: 43% in the 256-entry trace. However, duplication
does not seem to be strongly correlated to trace cache performance, although
the best-performing trace caches also introduce the most duplication.

The amount of dead traces is extremely high, ranging from 76% in the small-
est trace cache to 35% in the largest trace cache studied. Furthermore, most of
these dead traces are never used between storing them and replacing them from
the trace cache.
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