
A Fault-Tolerant Sequencer
for Timed Asynchronous Systems�

Roberto Baldoni, Carlo Marchetti, and Sara Tucci Piergiovanni

Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, Italia.

{baldoni,marchet,tucci}@dis.uniroma1.it

Abstract. In this paper we present the specification of a sequencer ser-
vice that allows independent processes to get a sequence number that
can be used to label successive operations (e.g. to allow a set of inde-
pendent and concurrent processes to get a total order on their opera-
tions). Moreover, we provide an implementation of the sequencer service
in a specific partially synchronous distributed system, namely the timed
asynchronous model. As an example, if a sequencer is used by a software
replication scheme then we get the advantage to deploy server replicas
across an asynchronous distributed system such as the Internet.

1 Introduction

Distributed agreement among processes is one of the fundamental building blocks
for the solution of many important problems in asynchronous distributed sys-
tems, e.g. mutual exclusion[9] and replication[10,3,8]. As an example, in the
context of software replication replicas have to run a distributed agreement pro-
tocol in order to maintain replica consistency. In particular, in the case of ac-
tive replication[10] the agreement problem reduces to the total order multicast
problem and in the case of passive replication[3] to the view synchronous multi-
cast problem[8]. In both cases these problems are not solvable in asynchronous
distributed systems prone to process crash failures due to FLP impossibility
result[7]. As a consequence, to solve these problems replicas have to be deployed
over a partially synchronous distributed system i.e., an asynchronous distributed
system which enjoys some timing assumption (e.g., known, or eventually known,
bounds on message transfer delay and on relative process speeds). Practically,
when working on a partially synchronous system, replication techniques can
benefit of group communication primitives and services implemented by group
toolkits such as total order multicast, view synchronous multicast, group mem-
bership, state transfer, etc.. These primitives employ agreement protocols to
ensure replica consistency. Let us remark that the partial synchronous system
assumption makes impossible the deployment of server replicas in real asyn-
chronous distributed systems such as the Internet.

� Work partially supported by MIUR (DAQUINCIS) and by AleniaMarconiSystems.

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 578–588.
c© Springer-Verlag Berlin Heidelberg 2002

A Fault-Tolerant Sequencer for Timed Asynchronous Systems 579

In this paper we present the specification of a sequencer service. The spec-
ification ensures (i) that independent client processes obtain distinct sequence
numbers for each distinct request submitted to the sequencer and (ii) that the
sequence numbers assigned are consecutive, i.e. the sequence of assigned numbers
does not present “holes”.

A sequencer service can then be exploited, for instance, in the context of
active replication. A sequencer implementation can be logically placed between
clients and server replicas, and can be used to piggyback sequence numbers onto
client requests, before sending them out to server replicas. In this way replicas
can independently order client requests without the need of executing distributed
agreement protocols. This actually makes possible the deployment of replicas
over an asynchronous distributed system (interested readers can refer to [2] for
additional details about this sequencer based replication technique) as there is
no need of additional timing assumptions on the system model underlying the
server replicas.

As second contribution, in this paper we provide a fault-tolerant implemen-
tation of the sequencer service. This implementation adopts a passive replication
scheme in which the sequencer replicas run over a specific partially synchronous
system, namely the timed asynchronous system model[6].

Coming back to the active replication example, the sequencer can then be
seen as the component that embeds the partial synchrony necessary to maintain
consistency among a set of server replicas. Therefore server replicas do not need
to run any distributed agreement protocol. This allows server replica deployment
over a real asynchronous distributed system[2].

The remainder of this paper is organized as follows: Section 2 introduces
the specification of the sequencer service. Section 3 presents the distributed
system model. Section 4 details our implementation of the sequencer. Section 5
concludes the paper. Due to lack of space, a formal proof of the correctness of
the implementation can be found in[1].

2 Specification of the Sequencer Service

A sequencer service receives requests from clients and assigns an integer positive
sequence number, denoted #seq, to each distinct request. Each client request
has a unique identifier, denoted req id, which is a pair 〈cl id,#cl seq〉 where
cl id is the client identifier and #cl seq represents the sequence number of the
requests issued by cl id. As clients implement a simple retransmission mecha-
nism to cope with possible sequencer implementation failures or network delays,
the sequencer service maintains a state A composed by a set of assignments
{a1, . . . ak−1, ak} where each assignment a corresponds to a pair 〈req id,#seq〉,
in which a.req id is a request identifier and a.#seq is the sequence number re-
turned by the sequencer service to client a.req id.cl id. A sequencer service has
to satisfy the following properties:
P1. Assignment Validity. If a ∈ A then there exists a client c that issued a
request identified by req id and req id = a.req id.

580 R. Baldoni, C. Marchetti, and S. Tucci Piergiovanni

P2. Response Validity. If a client c delivers a reply #seq, then ∃a =
〈req id,#seq〉 ∈ A.
P3. Bijection. ∀ai, aj ∈ A : ai.#seq �= aj .#seq ⇔ ai.req id �= aj .req id
P4. Consecutiveness. ∀ai ∈ A : (ai.#seq ≥ 1) ∧ (ai.#seq > 1 ⇒ ∃aj :
aj .#seq = ai.#seq − 1)
P5. Termination. If a client c issues a request, then, unless the client crashes,
it eventually delivers a reply.

P1 expresses that the state of the sequencer does not contain “spurious”
assignments. P2 states that the client cannot deliver a sequence number that
has not already been assigned by the sequencer. The predicate “P1 and P2”
implies that each client, delivering a sequence number, has previously issued a
request. P3 states that there is a one-to-one correspondence between the set of
req id and the set A. P4 says that the sequence, starting from one, of numbers
assigned by the sequencer has not “holes”. P5 states that the service is live.

3 System Model

We consider a distributed system in which processes communicate by message
passing. Processes can be of two types: clients and replicas. The latter form a
set {r1, . . . , rn} of processes implementing the fault-tolerant sequencer. A client
c communicates with replicas using reliable asynchronous channels. Replicas
run over a timed asynchronous model [6].

Client Processes. A client process sends a request to the sequencer service and
then waits for a sequence number. A client copes with replica failures using a
simple retransmission mechanism. A client may fail by crashing.

Communication between clients and replicas is asynchronous and reliable.
This communication is modelled by the following primitives: A-send(m, p) to
send an unicast message m to process p; and A-deliver(m, p) to deliver a mes-
sage m sent by process p.

To label a generic event with a sequence number, a client invokes the Get-
Seq() method. Such method blocks the client process until it receives an inte-
ger sequence number from a sequencer replica. In particular, the GetSeq()
method assigns to the ongoing request a unique request identifier req id =
〈cl id,#cl seq〉 , then (i) it sends the request to a replica and (ii) sets a lo-
cal timeout. Then, a result is returned by GetSeq() if the client receives a
sequence number for the req id request within the timeout expiration. Other-
wise, another replica is selected (e.g. using a cyclic selection policy), and the
request is sent again to the selected replica setting the relative timeout, until a
reply is eventually delivered.
Replica Processes. Replicas have access to local hardware clock (which is not
synchronized). Timeouts are defined for message transmission and scheduling
delays. A performance failure occurs when an experienced delay is greater than
the associated time-out. Replicas can also fail by crashing. A process is timely
in a time interval [s, t] iff during [s, t] it neither crashes nor suffers a performance

A Fault-Tolerant Sequencer for Timed Asynchronous Systems 581

failure. For simplicity, a process that fails by crashing cannot recover. A mes-
sage whose transmission delay is lesser than the associated time-out is timely. A
subset of replicas form a stable partition in [s, t] if any pair of replicas belonging
to the subset is timely and each message exchanged between the pair in [s, t] is
timely. Timed asynchronous communications are achieved through a datagram
service which filters out non-timely messages to the above layer. Replicas com-
municate among them through the following primitives: TA-send(m, ri) to send
an unicast message m to process ri; TA-broadcast(m) to broadcast m to all
replicas including the sender of m; TA-deliver(m, rj) is the upcall initiated by
the datagram service to deliver a timely message m sent by process rj .

We assume replicas implement the leader election service specified in[5]. This
service ensures that: (i) at every physical time there exists at most one leader, a
leader is a replica in which the Leader?() boolean function returns true; (ii) the
leader election protocol underlying the Leader?() boolean function takes at least
2δ for a leader change; (iii) when a majority of replicas forms a stable partition
in a time interval [t, t + ∆t] (∆t � 2δ) , then it exists a replica ri belonging to
that majority that becomes leader in [t, t + ∆t].

Note that the leader election service cannot guarantee that when a replica be-
comes leader it stays within the stable partition for the duration of its leadership
(e.g. the leader could crash or send non-timely messages to other replicas).

In order to cope with asynchronous interactions between clients and replicas,
to ensure the liveness of our sequencer protocol, we introduce the following
assumption, i.e.:
eventual global stabilization: there exists a time1 t and a set S ⊆ {r1, ...rn} :
|S| ≥ �n+1

2 � such that ∀t′ ≥ t, S is a stable partition.
The eventual global stabilization assumption implies (i) only a minority of

replicas can crash2 and (ii) there will eventually exist a leader replica ls ∈ S.

4 The Sequencer Protocol

In this section we present a fault-tolerant implementation of the sequencer ser-
vice. A primary-backup replication scheme is adopted [3,8]. In this scheme a
particular replica, the primary, handles all the requests coming from clients.
Other replicas are called backups. When a primary receives a client request, it
processes the request, updates the backups and then sends the reply to the client.
In our implementation the backup update lies on an update primitive (denoted
WriteMaj()) that successfully returns if it timely updates at least a majority
of replicas. This implies that inconsistencies can arise in some replica state.

If the primary fails, then the election of a new primary is needed. The primary
election lies on: (i) the availability of the leader election service running among
replicas (see Section 3). Leadership is a necessary condition to become primary

1 Time t is not a priori known.
2 Note that at any given time t′ (with t′ < t) any number of replicas can simultaneously
suffer a performance failure.

582 R. Baldoni, C. Marchetti, and S. Tucci Piergiovanni

and then to stay as the primary; (ii) a “reconciliation” procedure, namely “com-
puting sequencer state” procedure, (css in the rest of the paper) that allows
a newly elected leader to remove possible inconsistencies from its state before
becoming a primary. These inconsistencies, if kept in the primary state, could
violate the properties defined in Section 2. Hence a newly elected leader, before
becoming a primary, will read at least a majority of replica states, (this is done
by a ReadMaj() primitive during the css procedure). This allows a leader to
have in its state all successfully updates done by previous primaries. Then the
leader removes from its state all possible inconsistencies caused by unsuccessful
primary updates.

4.1 Protocol Data Structures

A replica ri endows: (1) a boolean variable called primary, which is set according
to the role (either primary or backup) played by the replica at a given time; (2)
an integer variable called seq, used to assign sequence numbers when ri acts
as a primary; (3) a state consisting of a pair 〈TA, epoch〉 where TA is a set
{ta1, ...tak} of tentative assignments and epoch is an integer variable. state.epoch
represents a value associated with the last primary seen by ri. When ri becomes
primary, state.epoch is greater than any epoch value associated with previous
primaries. state.epoch is set when a replica becomes primary and it does not
change during all the time a replica is the primary. A tentative assignment ta is
a triple 〈req id,#seq,#epoch〉 where ta.#seq is the sequence number assigned
to the request ta.req id and ta.#epoch is the epoch of the primary that executed
ta 3.

The set state.TA is ordered by TA.#seq field and ties are broken using
TA.#epoch field. We introduce last(state.TA) operation that returns the tenta-
tive assignment with greatest epoch number among those (if any) with greatest
sequence number. If state.TA is empty, then last(state.TA) returns null.

4.2 Basic Primitives and Definitions

In this section we present the basic primitives used to update and to read replica
states. Due to lack of space the pseudo-code of such primitives can be found in[1].
UpdateMaj(). Accepts as input parameter m, which can be either a tentative
assignment ta or an epoch e, and returns as output parameter a boolean value
b. Upon invocation, WriteMaj() executes TA-broadcast(m). Every replica
ri sends an acknowledgement upon the delivery of m. The method returns �
(i.e., it successfully returns) if (i) the invoker receives at least a majority of
timely acknowledgements, hence m is put into the replica state according to its
type, and (ii) if the invoker is still the leader at the end of the invocation.

3 Epoch numbers are handled by primaries to label their tentative assignments and
by leaders to remove inconsistencies during the css procedure.

A Fault-Tolerant Sequencer for Timed Asynchronous Systems 583

ReadMaj(). Does not take input parameters and returns as output parameter a
pair 〈b, maj state〉 where b is a boolean value and maj state is a state as defined
in Section 4.1. Upon invocation, ReadMaj() executes a TA-broadcast. Every
replica ri sends its state as reply. If ReadMaj() receives at least a majority
of timely replies, then it computes the union maj state.TA of the tentative
assignments contained in the just received states and sets maj state.epoch to
the maximum among the epochs contained in the just received states. If the
invoker is still leader it returns 〈�, maj state〉, otherwise 〈⊥,−〉.

Definitive Assignment: a tentative assignment ta is a definitive assignment iff
exists a primary p such that p executed WriteMaj(ta)= �.
Non-definitive Assignment : a tentative assignment which is not definitive.
Therefore, a definitive assignment is a tentative one. The viceversa is not nec-
essarily true. Non-definitive assignments are actually inconsistencies due to un-
successful WriteMaj() executions.

4.3 Protocol Description

Let us present in this section a preliminary explanation of the sequencer protocol
and two introductory examples before showing the replica pseudo-code.
Primary Failure-Free Behaviour. A primary upon receiving a client request first
checks if a sequence number was already assigned to the request, otherwise (i)
it creates a new tentative assignment ta embedding the request identifier and
a sequence number consecutive to the one associated with the last request, (ii)
invokes WriteMaj(ta) to update the backups and (iii) if WriteMaj(ta) suc-
cessfully returns, it sends back the sequence number to the client as ta is a
definitive assignment.
Change of Primary. There are three events that cause a primary replica ri to
lose the primaryship: (i) ri fails by crashing or (ii) WriteMaj(ta) returns ⊥
(WriteMaj(ta) could have notified ta to less than a majority of replicas) or
(iii) there is a leadership loss of ri (i.e., the Leader?() value becomes false in
ri). If any of these events occurs, the protocol waits that a new leader is elected
by the underlying leader election service. Then the css procedure is executed by
the new leader before starting serving requests as primary.
The css Procedure. The first action performed by a newly elected leader ri is to
invoke ReadMaj(). If ReadMaj() returns 〈⊥,−〉 and ri is always the leader,
ri will execute again ReadMaj(). If ri is no longer leader, the following leader
will execute ReadMaj() till this primitive will be successfully executed.

Once the union of the states of a majority of replicas, denoted maj state,
has been fetched by ReadMaj(), the css procedure has three main goals.
The first goal is to transform the tentative assignment last(maj state.TA)
in a definitive assignment on behalf of a previous primary that issued
WriteMaj(last(maj state.TA)). There is no way in fact for ri to know if
that WriteMaj() was successfully executed by the previous primary. The sec-
ond goal is to remove from maj state.TA all non-definitive assignments. Non-
definitive assignments are filtered out using the epoch field of tentative assign-

584 R. Baldoni, C. Marchetti, and S. Tucci Piergiovanni

ments. More specifically, the implementation enforces bijection (Section 2) guar-
anteeing that when there are multiple assignments with the same sequence num-
ber, the one with the greatest epoch number is a definitive assignment. The third
goal is to impose a primary epoch number e by using WriteMaj(). e is greater
than the one returned by ReadMaj() in maj state.epoch and greater than all
epoch numbers associated to previous primaries. If ri successfully executed all
previous points it starts serving requests as primary.

In the following we introduce two examples which point out how the previous
actions removes inconsistencies from a primary state.
Example 1: Avoiding inconsistencies by redoing the last tentative assignment.
The example is shown in Fig.1. Primary r1 accepts a client request req id1, cre-
ates a tentative assignment ta1 = 〈req id1, 1, 1〉, performs WriteMaj(ta1)= �
(i.e. ta1 is a definitive assignment) and sends the result 〈1, req id1〉 to the
client. Then r1 receives a new request req id2, invokes WriteMaj(ta2 =
〈req id2, 2, 1〉) and crashes during the invocation. Before crashing it updated
only r3. The next leader r2 enters the css procedure: ReadMaj() returns
in maj state.TA the union of r2 and r3 states (i.e., {ta1, ta2}) and in
maj state.epoch the epoch of the previous primary r1 (i.e., 1). Therefore, as
last(maj state.TA) returns ta2, r2 executes WriteMaj(ta2)= � on behalf of
the previous primary (r2 cannot know if ta2 is definitive or not). Then r2 exe-
cutes WriteMaj(maj state.epoch+1) and it ends the css procedure. When r2
receives the req id2, it finds ta2 in its state then sends 〈2, req id2〉 to the client.

Fig. 1. Example of a Run of the Sequencer Protocol

Example 2: Avoiding inconsistencies by filtering out non-definitive assignments.
The example is shown in Fig. 2. Primary r1 successfully serves req id1. Then,
upon the arrival of req id2, it invokes WriteMaj(), exhibits a performance fail-
ure and updates only replica r3 (ta2 is a non-definitive assignment). Then r1 loses
its primaryship and another leader (r2) is elected. r2 executes ReadMaj() which

A Fault-Tolerant Sequencer for Timed Asynchronous Systems 585

Fig. 2. Example of a Run of the Sequencer Protocol

returns in maj state the union of r1 and r2 states (i.e., {ta1}). Then r2 executes
WriteMaj(ta1)= � and imposes its epoch. Upon the arrival of a new request
req id3, primary r2 successfully executes WriteMaj(ta′

2 = 〈req id3, 2, 2〉) (i.e.
ta′

2 is a definitive assignment) and sends back the result 〈2, req id3〉 to the client.
Note that r1 and r3 contain two distinct assignments (ta2 and ta′

2) with
same sequence number and different epoch numbers (ta2.#epoch = 1 and
ta′

2.#epoch = 2). However the maj state.TA of a successive leader ri (r1 in
Figure 2) includes the definitive assignment ta′

2 (as it contained in a majority
of replicas). If ta2 is also a member of maj state.TA, ri is able to filter ta2 out
from maj state.TA as ta2.#epoch = 1 < ta′

2.#epoch = 2. After filtering, the
state of the primary r1 is composed only by definitive assignments. Note that
without performing such filtering the bijection would result violated, as the state
of a primary could contain two assignments with same sequence number.

Then, when r1 receives the request req id2 it performs WriteMaj(ta3 =
〈req id2, 3, 3〉) and if it successfully returns, r1 sends 〈3, req id2〉 to the client.

4.4 Behaviour of Each Replica

The protocol executed by ri consists in an infinite loop where three types of
events can occur (see Figure 3):

(1) receipt of a client request when ri acts as a primary (line 6); (2) receipt
of a “no leadership” notification from the leader election service (line 14); (3)
receipt of a “leadership” notification from the leader election service when ri is
not primary (line 16).
Receipt of a client request req id when ri acts as a primary. ri first checks if the
client request has been already served (line 7). In the affirmative, ri returns to
the client the global sequence number previously assigned to the request (line
8). Otherwise, ri (i) increases by 1 the seq variable (line 9) and (ii) creates a ten-
tative assignment ta such that ta.#seq = seq; ta.req id = req id; ta.#epoch =
state.epoch (line 10). Then ri executes WriteMaj(ta) (line 11). If it successfully

586 R. Baldoni, C. Marchetti, and S. Tucci Piergiovanni

Class Sequencer
1 Tentative Assignment ta;
2 State state := (∅, 0);
3 boolean primary := ⊥; connected := ⊥;
4 Integer seq := 0;
5 loop
6 when ((A-deliver [“GetSeq”, req id] from c) and primary) do
7 if (∃ta′ ∈ state.TA : ta′.req id = req id)
8 then A-send [“Seq”, ta′.#seq, req id] to c;
9 else seq := seq + 1;

10 ta.#seq := seq; ta.req id := req id; ta.#epoch := state.epoch;
11 if (WriteMaj (ta))
12 then A-send [“Seq”, seq, req id] to c;
13 else primary := ⊥;
14 when (not Leader?()) do
15 primary := ⊥;
16 when ((Leader?()) and (not primary)) do
17 (connected, maj state) := ReadMaj (); % computing sequencer state %
18 if (connected)
19 then ta := last(maj state.TA);
20 if (ta �= null)
21 then connected := WriteMaj (ta);
22 if (connected)
23 then for each taj , ta� ∈ maj state.TA :
24 (taj .#seq = ta�.#seq) and (taj .#epoch > ta�.#epoch)
25 do maj state.TA := maj state.TA − {ta�};
26 state.TA := maj state.TA; seq := last(state.TA).#seq;
27 if (WriteMaj (maj state.epoch + 1) and connected)
28 then primary := �;
29 end loop

Fig. 3. The Sequencer Protocol Pseudo-code Executed by ri

returns, ta becomes a definitive assignment and the result is sent to the client
(line 12). Otherwise, the primary sets primary = ⊥ (line 13) as WriteMaj(ta)
failed and ri stops serving client requests.
Receipt of a “leadership” notification when ri is not primary. A css procedure
(lines 17-28) is started by ri to become primary. As described in the previous
section, ri has to successfully complete the following four actions to become
primary: (1) ri invokes ReadMaj()(line 17). If the invocation is successful it
timely returns a majority state in the maj state variable4. (2) ri extracts the
last assignment ta from maj state.TA (line 19) and invokesWriteMaj(ta) (line
21) to make definitive the last assignment of maj state.TA (see the examples
in the previous section). (3) ri eliminates from maj state.TA any assignment
ta� such that it exists another assignment taj having the same sequence num-
ber of ta� but greater epoch number (lines 23-25). The presence of such a taj

in maj state implies that ta� is not definitive. This can be intuitively justified
by noting that if an assignment taj performed by a primary pk is definitive,
no following primary will try to execute another assignment with the same se-
quence number. After the filtering, state.TA is set to maj state.TA and seq to
last(state.TA).#seq as this is the last executed definitive assignment (line 26).

4 Due to the time taken by the the leader election protocol[5] (at least 2δ) to select
a leader (see Section 3), it follows that any ReadMaj() function starts after the
arrival of all the timely messages broadcast through any previous WriteMaj().

A Fault-Tolerant Sequencer for Timed Asynchronous Systems 587

(4) ri invokes WriteMaj(maj state.epoch+1) at line 27 to impose its primary
epoch number (greater than any previous primary). Then, ri becomes primary
(line 28).

If any of the above actions is not successfully executed by ri, it will not
become primary. Note that if ri is still leader after the unsuccessful execution of
the css procedure, it starts to execute it again.
Receipt of a “no leadership” notification. ri sets the primary variable to ⊥
(line 15). Note that a notification of “no leadership” imposes ReadMaj() and
WriteMaj() to fail (i.e. to return ⊥). Consequently if ri was serving a request
and executing statement 11, it sets primary to ⊥ (line 13).

Note that the proposed implementation adopts an optimistic approach[4]: it
allows internal inconsistencies among the sequencer replica states as it requires
only a majority of replicas to be updated at the end of each definitive assignment.
In other words the implementation sacrifices update atomicity to achieve better
performances in failure-free runs. The price to pay is in the css phase carried
out at each primary change.

It can be shown that the proposed protocol (along with the simple client
invocation semantic described in Section 3) satisfies the sequencer specification
given in Section 2. A detailed proof of correctness is given in[1].

5 Conclusions

In this paper we presented the specification of a sequencer service that allows
thin, independent clients to get a unique and consecutive sequence number to
label successive operations. We have then shown a fault-tolerant sequencer imple-
mentation based on a primary-backup replication scheme that adopts a specific
partially synchronous model, namely the timed asynchronous model.

The proposed implementation adopts an optimistic approach to increase per-
formances in failure-free runs with respect to (possible) implementations using
standard group communication primitives, e.g. total order multicast. This fol-
lows because the proposed implementation only requires a majority of replicas
to receive primary updates.

The practical interest of a fault-tolerant implementation of a sequencer ser-
vice lies in the fact that it can be used to synchronize processes running over an
asynchronous distributed system. For example, in the context of software repli-
cation, the sequencer actually embeds the partial synchrony necessary to solve
the problem of maintaining server replica consistency despite process failures.
This also allows to free server replicas from running over a partially synchronous
system, i.e. to deploy server replicas over an asynchronous system.

References

1. R. Baldoni, C. Marchetti, and S. Tucci-Piergiovanni. Fault Tolerant Sequencer:
Specification and an Implementation. Technical Report 27.01, Dipartimento di
Informatica e Sistemistica, Università di Roma “ La Sapienza”, november 2001.

588 R. Baldoni, C. Marchetti, and S. Tucci Piergiovanni

2. R. Baldoni, C. Marchetti, and S. Tucci-Piergiovanni. Active Replication in Asyn-
chronous Three-Tier Distributed System. Technical Report 05-02, Dipartimento
di Informatica e Sistemistica, Università di Roma “ La Sapienza”, february 2002.

3. N. Budhiraja, F.B. Schneider, S. Toueg, and K. Marzullo. The Primary-Backup
Approach. In S. Mullender, editor, Distributed Systems, pages 199–216. Addison
Wesley, 1993.

4. X. Défago, A. Schiper, and N. Sergent. Semi-passive replication. In Proceedings of
the 17th IEEE Symposium on Reliable Distributed Systems (SRDS), pages 43–50,
West Lafayette, IN, USA, October 1998.

5. C. Fetzer and F. Cristian. A Highly Available Local Leader Election Service. IEEE
Transactions on Software Engineering, 25(5):603–618, 1999.

6. C. Fetzer and F. Cristian. The Timed Asynchronous Distributed System Model.
IEEE Transactions on Parallel and Distributed Systems, 10(6):642–657, 1999.

7. M. Fischer, N. Lynch, and M. Patterson. Impossibility of Distributed Consensus
with One Faulty Process. Journal of the ACM, 32(2):374–382, April 1985.

8. R. Guerraoui and A. Schiper. Software-Based Replication for Fault Tolerance.
IEEE Computer - Special Issue on Fault Tolerance, 30:68–74, April 1997.

9. M. Raynal. Algorithms for Mutual Exclusion. MIT Press, 1986.
10. F.B. Schneider. Replication Management Using State-Machine Approach. In

S. Mullender, editor, Distributed Systems, pages 169–198. Addison Wesley, 1993.

	1 Introduction
	2 Specification of the Sequencer Service
	3 System Model
	4 The Sequencer Protocol
	4.1 Protocol Data Structures
	4.2 Basic Primitives and Definitions
	4.3 Protocol Description
	4.4 Behaviour of Each Replica

	5 Conclusions
	References

