
Dynamic Resource Management in a Cluster
for High-Availability

Pascal Gallard1, Christine Morin2, and Renaud Lottiaux1

1 IRISA/INRIA – Paris Research group
2 IRISA/Université de Rennes 1 – Paris Research group

{plgallar,cmorin,rlottiau}@irisa.fr

Abstract. In order to execute high performance applications on a clus-
ter, it is highly desirable to provide distributed services that globally
manage physical resources distributed over the cluster nodes. However,
as a distributed service may use resources located on different nodes, it
becomes sensitive to changes in the cluster configuration due to node
addition, reboot or failure. In this paper, we propose a generic service
performing dynamic resource management in a cluster in order to provide
distributed services with high availability. This service has been imple-
mented in the Gobelins cluster operating system. The dynamic resource
management service we propose makes node addition and reboot nearly
transparent to all distributed services of Gobelins and, as a consequence,
fully transparent to applications. In the event of a node failure, applica-
tions using resources located on the failed node need to be restarted from
a previously saved checkpoint but the availability of the cluster operating
system is guaranteed, provided that its distributed services implement
reconfiguration features.

1 Introduction

To efficiently execute high performance applications, cluster operating systems
must offer some global resource management services such as a remote paging
system[4], a system of cooperative file caches[7], a global scheduler[2] or a dis-
tributed shared memory[3,1]. A cluster OS can be defined as a set of distributed
services. Due to its distributed nature, the high-availability of such an operating
system is not guaranteed when a node fails. Moreover, a node addition or shut-
down should be done without stopping the cluster and its running applications.

In this paper, we propose a dynamic resource management service whose
main goal is to hide any kind of change in the cluster configuration (node addi-
tion, eviction or failure) to the OS distributed services and to the applications,
assuming process and page migration mechanisms are provided. A node failure
should be also transparent for checkpointed applications. This work takes place
in the framework of the design and implementation of Gobelins cluster OS. Go-
belins is a single system image OS which aims at offering the vision of an SMP
machine to programmers. Gobelins implements a set of distributed services for
the global management of memory, processor and disk resources. Our generic

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 589–592.
c© Springer-Verlag Berlin Heidelberg 2002



590 P. Gallard, C. Morin, and R. Lottiaux

dynamic resource management service has been experimented with the global
memory management service (a distributed shared memory)[6] of Gobelins for
node addition and eviction.

In Section 2, we describe the proposed dynamic resource management ser-
vice. Section 3 provides some details related to the service implementation and
presents experimental results. Section 4 concludes.

2 Dynamic Resource Management

We call configuration the set of active nodes in the cluster. A node is considered
to be active if it has not been detected failed by other active nodes and is not cur-
rently being added to or evicted from the cluster. A configuration change is due
to a node addition, shutdown or failure. The cluster OS is said to be in the stable
state when no configuration change is being processed. Otherwise, it is said to be
in the reconfiguration state. Each of the distributed services that together form
the cluster OS manages a collection of objects (for instance, a global memory
management service manages a collection of memory pages). Objects may move
between nodes at any time during the execution of an application on top of the
cluster OS. A set of metadata is associated with each object. In particular the
current location of an object is a metadata. In the model of distributed service
we consider, each service implements a distributed directory with one entry per
object, to store object metadata. On each node, the process responsible of the
local directory entries is called a manager. In a given configuration, the man-
ager of a particular directory entry is statically defined but when a configuration
change occurs, the distribution of directory entries on the nodes belonging to the
new configuration is updated.

The dynamic resource management service we have designed, called adap-
tation layer, is in charge of detecting configuration changes, updating the dis-
tribution of directory entries on cluster nodes in the event of a configuration
change, triggering reconfiguration of distributed services when needed (for ex-
emple after detection of a failure). Importantly, it is the adaptation layer which
ensures that at any time, all cluster nodes have a consistent view of the current
configuration. The adaptation layer is also used to locate directory managers[5].
At initialization time, each distributed service registers to the adaptation layer
to benefit from its functions. The registration step allows distributed services
to provide the adaptation layer service specific functions needed to perform the
service reconfiguration. Note that the adaptation layer implements a single re-
configuration protocol to deal with any kind of configuration changes.

The adaptation layer is implemented by two processes on each node: the
locator and the supervisor.

The locator process keeps track of directory managers for all distributed sys-
tem services. It is activated each time an object is accessed by an application as
the object metadata stored in the directory may be read to locate the considered
object and/or updated depending on the operation performed on the object. The
information used by the locator to locate managers is updated when the cluster



Dynamic Resource Management in a Cluster for High-Availability 591

OS is in reconfiguration state. It does not change when the OS is in the stable
state.

The supervisor process is responsible of the addition or the shutdown of the
node on which it executes. It is the supervisor process that prepares its own
node and notices the cluster. The set of supervisors in the cluster cooperate in
order to maintain a consistent view of the cluster configuration. In this way,
a node supervisor participates in the failure detection protocol. When a node
failure happens (or is suspected) a consensus protocol, which is out of the scope
of this paper, is executed. When a configuration change happens in the cluster,
after a communication layer update, the supervisor triggers directory entries’
migration. The functions registered by each service are used by the adapatation
layer for the migration of directory entries.

3 Implementation in Gobelins and Evaluation

The dynamic resource management service described in the previous section has
been implemented in Gobelins cluster OS and has been experimented with Go-
belins global memory management service as an example of distributed service.

64 128 256 512 1024 2048

− 0,75%

− 0,50%

− 0,25%

0,00%

0,25%

0,50%

0,75%

1,00%

1,25%

1,50%

1,75%

2,00%

2Node s

3Node s

4Node s

Matrix size

O
ve

rh
ea

d

Fig. 1. Overhead evaluation

The cluster used for exper-
imentation is made up of four
Pentium III (500MHz, 512KB
L2 cache) nodes with 512MB
of memory. The nodes commu-
nicate with a Gigabit network.
The Gobelins system used is an
enhanced 2.2.13 Linux kernel.
We consider here two of the Go-
belins modules, the high perfor-
mance communication system,
and the global memory man-
agement system. We present in
this paper an evaluation of the
overhead due to the adaptation
layer on the applications execu-

tion time. We have compared the execution time of the MGS application ob-
tained with two different versions of Gobelins: the original one in which directory
managers are located using a static modulo function (STAT) and a Gobelins ver-
sion in which distributed services rely on the adaptation layer to locate directory
managers (DYN).

The parallel application used in our tests is a Modified Gram-Schmidt (MGS)
algorithm. The MGS algorithm produces from a set of vectors an orthonormal
basis of the space generated by these vectors. The algorithm consists of an exter-
nal loop running through columns producing a normalized vector and an inner
loop performing for each normalized vector a scalar product with all the remain-
ing ones. Time is measured on the external loop of the MGS program. Each



592 P. Gallard, C. Morin, and R. Lottiaux

test is repeated 10 times. During the tests, error checking mechanisms in the
communication layer were disabled.

We made several sets of experiments with different matrix sizes (64, 128, 256,
512, 1024 and 2048) on different clusters (2, 3 and 4 nodes). The figure presents
the measured overhead for MGS calculated as: overhead =

(
DY N
STAT − 1

) ∗ 100.
In all cases, the overhead is less than 2%. In four cases (64-3N, 64-4N, 256-2N

and 512-4N), the dynamic version is more efficient than the static version. As we
indicate previously, the static version uses a distribution based on modulo. On
another side, the dynamic version uses its own distribution that is different from
modulo. In the particular case of Gram-Schmidt application, the new distribution
decreases the number of page requests across the network. Cluster with two nodes
and four nodes are similar cases because in these configurations every node has
exactly the same number of directory entries to manage.

4 Conclusion

The proposed adaptation layer makes it possible to dynamically change the clus-
ter configuration without stopping the OS services and consequently the running
applications. In the future, we want to add some fault tolerance properties inside
the directories in order to provide these properties to supported services.

References

1. C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and
W. Zwaenepoel. Treadmarks: Shared memory computing on networks of worksta-
tions. IEEE Computer, 29(2):18–28, 1996.

2. A. Barak and 0. La’adan. The MOSIX multicomputer operating system for high
performance cluster computing. Journal of Future Generation Computer Systems,
13(4-5):361–372, March 1998.

3. Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.
ACM Transactions on Computer Systems, 7(4), November 1989.

4. Michael J. Feeley, William E. Morgan, Frederic H. Pighin, Anna R. Karlin, Henry M.
Levy, and Chandramohan A. Thekkath. Implementing global memory management
in a workstation cluster. In Proc. of the 15th ACM Symposium on Operating Systems
Principles, pages 129–140, December 1995.

5. Pascal Gallard, Christine Morin, and Renaud Lottiaux. Dynamic resource manage-
ment in a cluster for scalability and high-availability. Research Report 4347, INRIA,
January 2002.

6. R.Lottiaux and C.Morin. Containers : A sound basis for a true single system image.
In Proceeding of IEEE International Symposium on Cluster Computing and the
Grid, pages 66–73, May 2001.

7. Thomas E. Anderson, Michael D. Dhalin, Jeanna M. Neefe, David A. Patterson,
Drew S. Roselli, and Randolph Y. Wang. Serverless network file systems. ACM
Transactions on Computer Systems, 14(1):41–79, February 1996.


	1 Introduction
	2 Dynamic Resource Management
	3 Implementation in Gobelins and Evaluation
	4 Conclusion
	References

