
Topic 10
Parallel Programming: Models, Methods

and Programming Languages

Kevin Hammond

Global Chair

1 Introduction

The greatest philosopher amongst us is as confined and hamstrung as the least
significant thinker by the very language and notations in which his or her ideas
can be expressed. By encapsulating complex concepts and ideas in simple words
and phrases that we then reuse, we avoid the need to repeat the small and stum-
bling steps of our predecessors. So too is Computer Science advanced, allowing
practitioners to benefit from the toil and wisdom of the pioneers through reusing
models and abstraction.

This EuroPar workshop provides a forum for the presentation of the lat-
est research results and practical experience in parallel programming models,
methods and languages. Advances in algorithmic and programming models, de-
sign methods, languages, and interfaces are needed for construction of correct,
portable parallel software with predictable performance on different parallel and
distributed architectures.

2 The Research Papers

The 9 papers that have been selected for the workshop target various language
paradigms and technologies: functional, object-oriented and skeletal approaches
are all represented. A primary theme of the papers in this year’s workshop is
how technologies can cross over paradigm boundaries to find wider application.
A second theme is exploitng abstraction mechanisms to reduce communication
costs.

Two papers demonstrate cross-over from the functional community to con-
ventional parallel systems. Firstly, Field, Kelly and Hansen show how the idea of
shared reduction variables can be used to control synchronisation within SPMD
programs. Shared variables can be introduced to eliminate explicit communica-
tions, thereby simplifying code structure. Furthermore, a lazy evaluation mech-
anism is used to fuse communications. The result is an improvement in perfor-
mance over the original version due to the reduction in communication.

Secondly, Liniker, Beckman and Kelly propose to use delayed evaluation, to
recapture context that has been lost through abstraction or compilation. In the
initial stages of execution, evaluation is delayed and the system captures data
flow information. When evaluation is subsequently forced through some demand,
the data flow information can be used to construct optimised versions of the

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 603–604.
c© Springer-Verlag Berlin Heidelberg 2002



604 K. Hammond

software components as appropriate to the calling context. The approach has
been tested experimentally in the context of four simple scientific applications
using the BLAS linear algebra library.

Skeleton approaches promise to dramatically increase programming abstrac-
tion by packaging common patterns of parallelism in high level routines. There
has, however, been a historical lack of support for skeletons in conventional lan-
guages such as C or C++. Kuchen’s paper introduces a library of basic skeletons
for such languages that supports required skeleton functionality including poly-
morphism, higher-order functions and partial applications at minimal cost in
efficiency. The library is built on MPI and therefore portable and efficient.

Having the right skeletons available when required is equally important for
effective program construction. Bischof and Gorlatch introduce a new skeleton
construct, the double-scan primitive, a combination of two conventional scan
operations: one left scan with one right counterpart. The work is applied to
existing software components whose purpose is to solve a system of linear equa-
tions. The paper demonstrates both predictability of performance and absolute
performance that is comparable to a hand-coded version of the problem.

Recent developments in FPGA technology provide the potential for cheap
large-scale hardware parallelism. The paper by Hawkins and Abdallah shows
how this potential can be exploited by using a high-level functional language as
a behavioural specification that can be systematically transformed into Handel-
C and thus to FPGA circuitry. The work is applied to a real-world problem: a
JPEG decompression algorithm.

At a more abstract level, Pedicini and Quaglia introduce a new system for
distributed execution of λ-terms, PELCR. Their approach used Directed Virtual
Reduction, a parallel graph-rewriting technique, enhanced with a priority mech-
anism. Speedup is demonstrated for a standard λ-calculus benchmark, DDA.

Scalability and predictability are key concerns. Work by Sobral and Proença
studies scalability issues for object-oriented systems. Their objective is to ensure
scalability dynamically by automatically increasing task granularity and reduc-
ing communication through runtime coalescing of messages. The work has been
evaluated empirically on a number of platforms using a farm-type application.

Finally, exception handling and I/O mechanisms that have been designed for
sequential languages and systems can present difficulties for concurrency. One
particular problem arises in the context of explicit asynchronous method invoca-
tion, where the caller may no longer be in a position to handle remotely induced
exceptions at the point they are raised. The paper by Keen and Olsson addresses
this issue, introducing new language constructs for forwarding remotely induced
exceptions to appropriate handlers. The mechanism has been implemented in JR,
an extended Java aimed at tightly coupled concurrent systems. Bougeé, Danjean
and Namyst meanwhile consider how to improve responsiveness to I/O events in
multithreaded reactive systems, by introducing a synchronous detection server
to provide a managed service to such events. This approach is demonstrably
superior to standard approaches based on polling.


	1 Introduction
	2 The Research Papers

