
Double-Scan: Introducing and Implementing
a New Data-Parallel Skeleton

Holger Bischof and Sergei Gorlatch

Technical University of Berlin, Germany

Abstract. We introduce a new reusable component for parallel pro-
gramming, the double-scan skeleton. For this skeleton, we formulate and
formally prove sufficient conditions under which the double-scan can be
parallelized, and develop its efficient MPI implementation. The solution
of a tridiagonal system of equations is considered as our case study. We
describe how this application can be developed using the double-scan
and report experimental results for both absolute performance and per-
formance predictability of the skeleton-based solution.

1 Introduction

This work is motivated by the search for convenient, reusable, adaptable com-
ponents for building parallel applications. We pursue the approach based on
skeletons – typical algorithmic patterns of parallelism. The programmer com-
poses an application using skeletons as high-level language constructs, whose
implementations for different parallel machines are provided by a compiler or a
library. Formally, skeletons are viewed as higher-order functions, customizable
by means of application-specific functional parameters. Well-known examples of
practical skeleton-based programming systems include P3L [9] and Skil [2] in
the imperative setting, as well as Eden [3] and HDC [7] in the functional world.

This paper demonstrates by reference to an application case study – the
solution of a tridiagonal system of linear equations – how a new data-parallel
skeleton called double-scan is identified, implemented and added to an existing
inventory of components.

The contributions and structure of the paper are as follows:

– We describe a basic skeleton repository containing well-known data-parallel
skeletons, such as map, reduce, zip, and two scans – left and right (Section 2).

– We express the problem of solving a tridiagonal system of equations using
the basic skeletons, demonstrating the need for a new skeleton (Section 3).

– We introduce the new double-scan skeleton – a composition of two scans,
one of which has a non-associative base operator – and prove the sufficient
condition under which it can be parallelized (Section 4).

– We demonstrate how the performance of programs using the double-scan
skeleton can be predicted in advance and demonstrate both the absolute
performance and the possibility of predicting the performance of our MPI
implementation by experiments on a Cray T3E (Section 5).

We conclude the paper by discussing our results in the context of related work.

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 640–647.
c© Springer-Verlag Berlin Heidelberg 2002

Double-Scan: Introducing and Implementing a New Data-Parallel Skeleton 641

2 Basic Data-Parallel Skeletons

In this section, we present some basic data-parallel skeletons as higher-order
functions defined on non-empty lists, function application being denoted by jux-
taposition, i. e. f x stands for f(x):

– Map: Applying a unary function f to all elements of a list:

map f [x1, . . . , xn] = [f x1, . . . , f xn]

– Red: Combining the list elements using a binary associative operator ⊕:

red(⊕)([x1, . . . , xn]) = x1 ⊕ · · · ⊕ xn

– Zip: Component-wise application of a binary operator � to a pair of lists of
equal length:

zip(�)([x1, . . . , xn], [y1, . . . , yn]) = [(x1 � y1), . . . , (xn � yn)]

– Scan-left and scan-right: Computing prefix sums of a list by traversing the
list from left to right (or vice versa) and applying a binary operator ⊕:

scanl(⊕)([x1, . . . , xn]) = [x1, (x1⊕ x2), . . . , (· · ·(x1⊕ x2)⊕ x3)⊕· · ·⊕ xn)]
scanr(⊕)([x1, . . . , xn]) = [(x1⊕· · ·⊕ (xn−2⊕ (xn−1 ⊕ xn)· · ·), . . . , xn]

We call these functions skeletons because each of them describes a whole
class of functions, obtainable by substituting application-specific operators for
parameters ⊕, � and f .

Our skeletons have obvious data-parallel semantics: the asymptotic parallel
complexity is constant for map and zip and logarithmic for red and both scans,
if ⊕ is associative. If ⊕ is non-associative, then red and the scans are computed
sequentially with linear time complexity.

3 Case Study: Tridiagonal System Solver

In this section, we consider an application example and try to parallelize it using
the skeletons introduced in Section 2. Our case study is concerned with solving
a tridiagonal system of linear equations, A · x = b, where A is an n × n matrix
representing coefficients, x a vector of unknowns and b the right-hand-side vector.
The only values of matrix A unequal to 0 are on the main diagonal as well as
above and below it (we call them the upper and lower diagonal, respectively),
as demonstrated by equation (1).




a12 a13
a21 a22 a23

.
an−1,1 an−1,2 an−1,3

an,1 an,2




· x =




a14
a24
...

an−1,4
an,4




(1)

642 H. Bischof and S. Gorlatch

Our first step is to cast the tridiagonal system in the list notation since our
skeletons work on lists. We choose a representation comprising a list of rows,
each inner row i consisting of four values: the value ai,1 that is part of the lower
diagonal of matrix A, the value ai,2 at the main diagonal, the value ai,3 at the
upper diagonal, and the value ai,4 that is the i-th component of the right-hand-
side vector b.

To make the first and last row consist of four values, too, we add to the matrix
the fictitious zero elements a11 and an,3. The fictitious values obviously do not
change the solution of the original tridiagonal system: imagine two additional
unknowns, x0 and xn+1, and two additional columns, one on the left of the
original matrix and the other on the right, whose values are equal to zero.

We can thus represent the whole tridiagonal system as the following list of
rows, each of which is a quadruple:

[
(a11, a12, a13, a14), (a21, a22, a23, a24), . . . , (an1, an2, an3, an4)

]
A typical algorithm for solving a tridiagonal system is Gaussian elimination

(see e. g. [8,10]) which eliminates the lower and upper diagonal of the matrix as
shown in Figure 1. Note that both the first and last column in the figure consist
of fictitious zero elements.




• • •
• • • 0
. . .
. . .
. . .

0 • • •
• • •




(1)−→




• • •
• • • 0
...

. . .
. . .

• 0 • •
• • •




(2)−→




• • •
• • 0 •
...

. . .
...

• 0 • •
• • •




Fig. 1. The intuitive algorithm for solving a tridiagonal system of equations consists of
two stages: (1) elimination of the lower diagonal; (2) elimination of the upper diagonal.

The two stages of the algorithm traverse the list of rows, applying operators
denoted by ➀ and ➁, which are informally defined as follows:

1. The first stage eliminates the lower diagonal by traversing matrix A from
top to bottom according to the scanl pattern and applying operator ➀ on
the rows pairwise:

(a1, a2, a3, a4) ➀ (b1, b2, b3, b4) =
(

a1, a3− b2a2
b1

, −b3a2
b1

, a4− b4a2
b1

)

2. The second stage eliminates the upper diagonal of the matrix by a bottom-
up traversal, i. e. using the pattern of scanr and applying operator ➁ on
pairs of rows:

(a1, a2, a3, a4) ➁ (b1, b2, b3, b4) =
(

a1− b1a3
b2

, a2, −b3a3
b2

, a4− b4a3
b2

)
(2)

Double-Scan: Introducing and Implementing a New Data-Parallel Skeleton 643

Now we can specify the described Gaussian elimination algorithm as function
tds (tridiagonal system), which performs in two stages:

tds = scanr(➁) ◦ scanl(➀) (3)

where ◦ denotes function composition from right to left, i. e. (f ◦ g) x = f(g(x)).
If both customizing operators of the scan skeletons in (3), ➀ and ➁, were

associative, our task would now be completed: both scan skeletons have data-
parallel semantics, and furthermore, they can be directly implemented using, for
example, the MPI collective operation MPI_Scan. However, since operator ➀ is
not associative, scanl in (3) prescribes strictly sequential execution.

An alternative representation of the algorithm eliminates first the upper and
then the lower diagonal using two new row operators, ➂ and ➃:

(a1, a2, a3, a4) ➂ (b1, b2, b3, b4) =
(

a1, a2− b1a3
b2

, −b3a3
b2

, a4− b4a3
b2

)

(a1, a2, a3, a4) ➃ (b1, b2, b3, b4) =
(

a1,−b2a2
b1

, a3 − b3a2
b1

, a4− b4a2
b1

)

This version of the algorithm can be specified as follows:

tds = scanl(➃) ◦ scanr(➂) (4)

Again, however operator ➂ in (4) is not associative and thus the first step of
algorithm (4), scanr(➂) cannot be directly parallelized.

4 The Double-Scan Skeleton and Its Parallelization

This section deals with the algorithmic pattern we identified using the case study
in Section 3 – a sequential composition of two scans. We call a composition of
two scans, one of which is the “left” and the other the “right” scan, the double-
scan skeleton. This skeleton has two functional parameters, which are the base
operators of the constituting scans. The non-associativity of the first scan in the
composition prevents parallelization of the double-scan.

To parallelize the double-scan skeleton, we relate it to a more complex algo-
rithmic pattern than the basic skeletons introduced in Section 2. Let us consider
a class of functions called distributable homomorphisms (DH), which was first
introduced in [6]:

Definition 1. A function h is a distributable homomorphism iff there exist bi-
nary operators ⊕ and ⊗, such that for arbitrary lists x and y of equal length,
which is a power of two, it holds:

h[a] = [a] , h(x ++ y) = zip(⊕)(h x, h y) ++ zip(⊗)(h x, h y) (5)

For operators ⊕ and ⊗, we denote the corresponding DH by h = (⊕�⊗). Its
computation schema is illustrated in Figure 2.

In [6], a generic parallel implementation of an arbitrary DH is developed,
which works on a logical hypercube. For the sake of brevity, we give the MPI
implementation in pseudocode:

644 H. Bischof and S. Gorlatch

.

h

h

x

y h y

h x h x

h y

zip(�)(hx; h y) zip(
)(hx; h y)

Fig. 2. Distributable homomorphism h on a concatenation of two lists, x and y: apply
h to x and y, then combine the results elementwise with operators ⊕ and ⊗ and
concatenate them (bottom of figure).

int MPI_DH(void *data, ..., MPI_User_function ⊕, ⊗, ...) {
for (dim=1; dim<p; dim<<=1) {
dest = my_rankˆdim; /* rank of hypercube neighbour */
MPI_Sendrecv(data, ..., dest, temp, ..., dest, ...);
if (my_rank<dest) data=data⊕ temp; else data=temp⊗ data; }}

Here, MPI_Sendrecv acts as a typical operational pattern of the hypercube
behaviour: pairwise, bidirectional communication of the neighbouring nodes in
dimension dim, followed by the application of either ⊕ or ⊗ in each of the nodes.

The novel result of this paper is the following sufficient condition under which
the double-scan skeleton can be expressed using the DH pattern:

Theorem 1. Let ➀, ➁, ➂, ➃ be binary operators, where ➁ and ➃ are associative
(➀, ➂ need not be associative). If the following equation holds:

scanr(➁) ◦ scanl(➀) = scanl(➃) ◦ scanr(➂) def= s (6)

then s from (6) can be represented as follows:

s = map(π1) ◦ ⊕�⊗ ◦ map(triple) (7)

with the operators ⊕ and ⊗ defined as follows:

a1

a2
a3


⊕


b1

b2
b3


 =


a1 ➁ (a3 ➀ b2)

a2 ➁ (a3 ➀ b2)
(a3 ➂ b2) ➃ b3





a1

a2
a3


⊗


b1

b2
b3


 =


(a3 ➂ b2) ➃ b1

a2 ➁ (a3 ➀ b2)
(a3 ➂ b2) ➃ b3


 (8)

Here, triple maps an element to a triple, triple a = (a, a, a), and function π1
extracts the first element of a triple, π1(a, b, c) = a.

We do not present the theorem’s proof here owing to the lack of space; it is
contained in a technical report [1].

To apply the general result of Theorem 1 to our example of a tridiagonal
system solver, it remains to be shown that operators ➁ in (3) and ➃ in (4) are
associative. For example, the associativity of ➁ defined in (2) is demonstrated

Double-Scan: Introducing and Implementing a New Data-Parallel Skeleton 645

below using the associativity of addition and multiplication and the distributivity
of multiplication over addition:



a1
a2
a3
a4


➁







b1
b2
b3
b4


➁




c1
c2
c3
c4





 =




a1 − b1a3
b2

+ c1b3a3
c2b2

a2
c3b3a3
c2b2

a4 − b4a3
b2

+ c4b3a3
c2b2


 =







a1
a2
a3
a4


➁




b1
b2
b3
b4





➁




c1
c2
c3
c4




Analogously, the associativity of operator ➃ can be proved. Now a parallel
implementation of the DH skeleton can be used to compute the tds function.

5 Performance Prediction and Measurements

In this section, we look at the performance of programs using the double-scan
skeleton from two perspectives: (1) whether performance for a particular ap-
plication on a particular parallel machine can be predicted in advance, and (2)
whether absolute performance is competitive with that of a hand-coded solution.

Programming with skeletons offers a major advantage in terms of perfor-
mance prediction: performance has to be estimated only once for a skeleton.
This generic estimate can then be tuned to a particular machine and applica-
tion, rather than redoing the estimation procedure for each new machine and
application. We demonstrate below possible tuning steps in performance pre-
diction: we derive an estimate for the DH skeleton, and then tune it: first to a
particular machine (Cray T3E), and then to a particular application (tridiagonal
system solver).

Generic Performance Estimate. Let p be the number of processes and m the
data-block size per process. Our implementation of the DH skeleton consists of
log2 p steps, each performing a bidirectional communication with data of length
m and the computation with ⊕ or ⊗. Operators ⊕ and ⊗ are applied elementwise
to the data, consisting of m elements. The resulting time estimate is:

t = log2 p · (ts + m · (tw + tc)) (9)

where ts is the communication startup time, tw the time needed to communicate
one word, and tc the maximum time for one computation with ⊕ or ⊗.

Estimate Tuned to Cray T3E. Variables ts and tw are machine-dependent. On
a Cray T3E, ts is approximately 16.4µs. The value of tw also depends on the
size of the data type: tw = d · tB , where tB is the time needed to communicate
one byte, and d is the byte count of the data type. Measurements show that for
large array sizes the bidirectional bandwidth on our machine is approximately
300 MB/s, i. e. tB ≈ 0.0033µs. Inserting these values of ts and tB into (9) leads
to the following runtime estimate for the double-scan skeleton on a Cray T3E:

tCray = log2 p · (16.4µs + m · (d · 0.0033µs + tc)) (10)

646 H. Bischof and S. Gorlatch

Estimate Tuned to the Tridiagonal System Solver. The estimate for a particular
machine can be further specialized for a particular application, i. e. an instance of
the skeleton. Let us predict the runtime of the tridiagonal system solver on a Cray
T3E. In computing tds, our data type is a triple of quadruples containing double
values and has a size of d = 96 Bytes. Measurements show that one operator
⊕ or ⊗ in (8) for tridiagonal systems requires time tc ≈ 2.44µs (measured by
executing ⊕ in a loop over a large array). Inserting d and tc into (10) results in:

tCray-tds = log2 p · (16.4µs + m · 2.76µs) (11)

The next specialization step is to substitute a particular problem size m. We
compute with 217 elements per process, where one element is a quadruple of
float values in the sequential algorithm and a triple of quadruples of float values
in the parallel algorithm; the tds function is computed elementwise on the input
data. The resulting estimate for our problem size is:

T = log2 p · 0.36 s

Figure 3(a) compares the estimated and measured time for the tridiagonal
system solver and demonstrates the high quality of our estimates.

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10 12 14 16

Cray T3E, 2^17 elements/processortime in s

processors

sequential
parallel, measured
parallel, estimated

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 4 6 8 10 12 14 16

Cray T3E, 2^20 elements/processortime in s

processors

Allreduce (DH)
Allreduce (MPI)

Scan (DH)
Scan (MPI)

Runtimes of the sequential vs. parallel
(estimated and measured) version of the
tridiagonal system solver.

Comparison MPI DH vs. MPI Scan and
MPI Allreduce on Cray T3E with 220

Fig. 3. Measurements

Absolute Performance of DH Implementation. To show that our DH implemen-
tation is competitive with hand-coded implementations, we tested it under fairly
hard conditions. Since allreduce and scan are both DHs ([6]), we use the MPI_DH
function to compute scan and allreduce and compare it to the performance of
two native collective MPI implementations – MPI_Scan and MPI_Allreduce. In
other words, we compare the performance of particular instantiations of our
generic DH implementation with specially developed, hand-coded native MPI
implementations, optimized for a particular machine.

Double-Scan: Introducing and Implementing a New Data-Parallel Skeleton 647

Figure 3(b) shows the results for a Cray T3E with 220 elements per process
using elementwise integer addition as the base operator. Note that the overall
number of elements grows proportionally to the number of processes. The re-
sults of measurements show that our DH implementation, despite its simplicity,
exhibits very competitive performance.

6 Related Work and Conclusion

The desire to be able to name and reuse “programming patterns”, i. e. to capture
them in the form of parameterizable abstractions, has been a driving force in
the evolution of high-level programming languages in general. In the sequential
setting, design patterns [5] and components [11] are recent examples of this.
In parallel programming, where algorithmic aspects have traditionally been of
special importance, the approach using algorithmic skeletons [4] has emerged.
Related work on skeletons is manifold and was partially cited in the introduction.

In this paper, we systematically developed a parallel implementation for solv-
ing a tridiagonal system of equations using a novel generic program component
(the double-scan skeleton), which is reusable for other classes of applications.
The use of the skeleton also allowed a systematic performance prediction, the
results of which have been confirmed in machine experiments.

References

1. H. Bischof, S. Gorlatch, and E. Kitzelmann. The double-scan skeleton and its
parallelization. Technical Report 2002/06, Technische Universität Berlin, 2002.

2. G. Botorog and H. Kuchen. Efficient parallel programming with algorithmic skele-
tons. In L. Bougé et al., editors, Euro-Par’96: Parallel Processing, Lecture Notes
in Computer Science 1123, pages 718–731. Springer-Verlag, 1996.

3. S. Breitinger, R. Loogen, Y. Ortega-Mallén, and R. Peña. The Eden coordination
model for distributed memory systems. In High-Level Parallel Programming Models
and Supportive Environments (HIPS). IEEE Press, 1997.

4. M. I. Cole. Algorithmic Skeletons: A Structured Approach to the Management of
Parallel Computation. PhD thesis, University of Edinburgh, 1988.

5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elemets of
reusable object-oriented software. Addison Wesley, 1995.

6. S. Gorlatch. Systematic efficient parallelization of scan and other list homomor-
phisms. In L. Bougé, P. Fraigniaud, A. Mignotte, and Y. Robert, editors, Euro-
Par’96: Parallel Processing, Vol. II, Lecture Notes in Computer Science 1124, pages
401–408. Springer-Verlag, 1996.

7. C. A. Herrmann and C. Lengauer. HDC: A higher-order language for divide-and-
conquer. Parallel Processing Letters, 10(2–3):239–250, 2000.

8. F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann Publ., 1992.

9. S. Pelagatti. Structured development of parallel programs. Taylor&Francis, 1998.
10. M. J. Quinn. Parallel Computing. McGraw-Hill, Inc., 1994.
11. C. Szyperski. Component software: beyond object-oriented programming. Addison

Wesley, 1998.

	1 Introduction
	2 Basic Data-Parallel Skeletons
	3 Case Study: Tridiagonal System Solver
	4 The Double-Scan Skeleton and Its Parallelization
	5 Performance Prediction and Measurements
	6 Related Work and Conclusion
	References

