
Sources of Parallel Inefficiency
for Incompressible CFD Simulations

Sven H.M. Buijssen1,2 and Stefan Turek2

1 University of Heidelberg, Institute of Applied Mathematics,
Interdisciplinary Center for Scientific Computing (IWR),

INF 294, 69120 Heidelberg, Germany
2 University of Dortmund, Institute for Applied Mathematics and Numerics,

Vogelpothsweg 87, 44227 Dortmund, Germany

Abstract. Parallel multigrid methods are very prominent tools for solv-
ing huge systems of (non-)linear equations arising from the discretisa-
tion of PDEs, as for instance in Computational Fluid Dynamics (CFD).
The superiority of multigrid methods in regard of numerical complexity
mainly stands and falls with the smoothing algorithms (‘smoother’) used.
Since the inherent highly recursive character of many global smoothers
(SOR, ILU) often impedes a direct parallelisation, the application of
block smoothers is an alternative. However, due to the weakened re-
cursive character, the resulting parallel efficiency may decrease in com-
parison to the sequential performance, due to a weaker total numerical
efficiency. Within this paper, we show the consequences of such a strat-
egy for the resulting total efficiency if incorporated into a parallel CFD
solver for 3D incompressible flow. Moreover, we compare this parallel
version with the related optimised sequential code in FeatFlow and we
analyse the numerical losses of parallel efficiency due to communication
costs, numerical efficiency and finally the choice of programming lan-
guage (C++ vs. F77). Altogether, we obtain quite surprising, but more
realistic estimates for the total efficiency of such a parallel CFD tool in
comparison to the related ‘optimal’ sequential version.

1 Numerical and Algorithmic Approach

A parallel 3D code for the solution of the incompressible nonstationary Navier-
Stokes equations

ut − ν∆u + (u · ∇)u + ∇p = f , ∇ · u = 0 (1)

has been developed. This code is an adaptation of the existing sequential Feat-
Flow solver (see www.featflow.de). For a detailed description of the numerical
methods applied see [1,3]. Here we restrict ourselves to a very brief summary
of the mathematical background. Equation (1) is discretised separately in space
and time. First, it is discretised in time by one of the usual second order methods
known from the treatment of ordinary differential equations (Fractional-Step-θ-
scheme, Crank-Nicolson-scheme). Space discretisation is performed by applying

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 701–704.
c© Springer-Verlag Berlin Heidelberg 2002



702 S.H.M. Buijssen and S. Turek

a special finite element approach using the non-conforming Q̃1/Q0 spaces (non-
parametric version). The convective term is stabilised by applying an upwind
scheme (weighted Samarskij upwind). Adaptive time stepping for this implicit
approach is realised by estimating the local truncation error. Consequently, so-
lutions at different time steps are compared. Within each time step the coupled
problem is split into scalar subproblems using the Discrete Projection method.
We obtain definite problems in u (Burgers equations) as well as in p (Pressure-
Poisson problems). Then we treat the nonlinear problems in u by a fixed point
defect correction method, the linearised nonsymmetric subproblems are solved
with multigrid. For the ill-conditioned linear problems in p a preconditioned con-
jugate gradient method is applied. As preconditioner, multiplicative as well as
additive multigrid (using Jacobi/SOR/ILU smoothers) has been implemented.

In order to parallelise the multigrid method the coarse mesh is split into par-
allel blocks by a graph-oriented partitioning tool (Metis, PARTY). Subsequently,
each block is uniformly refined. Consistency with the sequential algorithm (MV
application, grid transfer) is guaranteed through local communication between
at most two parallel blocks (this is possible because of the face-oriented Q̃1/Q0
ansatz). The inherent recursive character of global smoothers impedes a direct
parallelisation. Therefore, the global smoothing is replaced by smoothing within
each parallel block only (block smoothers). To minimise the communication over-
head for solving the coarse grid problem, it is treated on a single processor with
an optimised sequential algorithm. The costs is two global communications (set-
ting up the right side and propagation of the solution vector).

The code has been tested [1] for many configurations including standard
benchmarks like Lid-Driven-Cavity and “DFG-Benchmark” [2] as well as some
problems with industrial background: computation of drag values on model car
surfaces (automotive industry), simulation of molten steel being poured into
a mould (steel industry). Hexahedral meshes with aspect ratios up to 500 and
problems with 100 million degrees of freedom in space and up to several thousand
time steps have been successfully handled. Examples are presented in the talk.

2 Comparison of Sequential vs. Parallel Implementation

As mentioned earlier, the difference between sequential and parallel implementa-
tion is the way how smoothing operations are performed. If invoked on more than
one node the parallel smoothers work on subdomains that differ from the one the
sequential algorithm uses such that, besides communication costs, the number
of multigrid sweeps increases with increasing number of parallel processes. The
second major difference is the programming language. The sequential implemen-
tation has been done in F77, the parallel in C++. These two aspects have to be
taken into account when comparing run times. Table 1 shows for a given problem
the run times of both implementations. One notices that there is a significant
loss associated with stepping from the sequential CFD solver to a parallel one
and from F77 to C++. On the very same architecture 4 nodes are necessary
to match the sequential F77 run time. If using a parallel supercomputer whose



Sources of Parallel Inefficiency for Incompressible CFD Simulations 703

Table 1. Run time comparison for nonstationary DFG-Benchmark 3D-2Z [2] using
sequential (F77) and parallel implementation (C++).

implementation architecture d.o.f. cpu time
space time [min]

sequential Alpha ES40 5,375,872 1,455 2086
parallel (1 node) Alpha ES40 5,375,872 1,446 6921
parallel (4 nodes) Alpha ES40 5,375,872 1,466 2151
parallel (4 nodes) Cray T3E-1200 5,375,872 1,466 4620
parallel (32 nodes) Cray T3E-1200 5,375,872 1,522 831
parallel (70 nodes) Cray T3E-1200 5,375,872 1,502 615
parallel (130 nodes) Cray T3E-1200 5,375,872 1,514 688

single nodes have approximately half the performance of a workstation node,
the sequential run time can of course be beaten, but only using brute compute
power. Several reasons play a role: the parallel implementation uses a more ab-
stract programming language and is less close to hardware, the optimisation skills
of compilers probably differ. The main question, however, is: How good/bad is
the total efficiency of the parallel implementation? What causes the run time
losses observed? Which influence has the different (blockwise) smoothing?

3 Examination of Parallel Efficiency

In order to explain the behaviour of the parallel implementation seen in Table 1
we primarily focused on its scalability. For a mesh with small aspect ratios (AR
≈ 3) a medium and a big size problem were studied for different platforms and
numbers of processes. Figure 1 shows the measured parallel efficiencies. It can be
observed that parallel efficiency is not too bad if the problem size is sufficiently
large (Figure 1 (b)) and if the parallel infrastructure is well-designed (as on a

1 2 4 8 16 32 64 128 256

0

0.2

0.4

0.6

0.8

1

#Prozesse

P
ar

al
le

le
 E

ffi
zi

en
z

Alphacluster
Alpha ES40 (cxx)
Alpha ES40 (g++)
Cray T3E−1200
Linuxcluster
Sun Enterprise 3500

(a) 1.3 million d.o.f. in space

1 2 4 8 16 32 64 128 256

0

0.2

0.4

0.6

0.8

1

#Prozesse

P
ar

al
le

le
 E

ffi
zi

en
z

Alphacluster
Alpha ES40 (cxx)
Alpha ES40 (g++)
Cray T3E−1200
Linuxcluster
Sun Enterprise 3500

(b) 10.6 million d.o.f. in space

Fig. 1. Parallel efficiency for a problem with 1.3 resp. 10.6 million d.o.f. in space on a
mesh with small aspect ratios. (Platforms: Alphacluster ALiCEWuppertal, Alpha ES40
with cxx/g++ compiler, Cray T3E-1200 Jülich, Linuxcluster PIII 650 MHz Heidelberg,
Sun Enterprise 3500 Dortmund)



704 S.H.M. Buijssen and S. Turek

Cray T3E). The performance on multi-processor workstations and clusters is
worse. This is clearly due to increasing communication loss on these platforms.
But besides communication loss (which can be expected) there is another effect
playing an important role as soon as the number of parallel processes increases:
the number of iterations needed to solve the Pressure-Poisson problems increases
by a factor of 3 if stepping from 1 to 256 processes.1 This means the amount of
time the program spends solving the Pressure Poisson problems increases from
9 to 33 percent. Without this effect, parallel efficiency for the big problem using
256 processes on a Cray T3E-1200 would be 0.72 instead of nearly 0.60.

If a mesh with worse aspect ratios (AR ≈ 20) is probed, the problem becomes
much more obvious. Using such an anisotropic mesh and comparing two runs
with 1 and 64 processes, respectively, the mean number of iterations needed to
solve the (elliptic) Pressure Poisson problems increases by a factor of 4-5: More
than half of the run time is now spent solving these subproblems. Consequently,
parallel efficiency regresses even more. Additionally, solving Pressure Poisson
problems needs more communication than any other part of the program. Thus,
the increasing mean number of iterations gives us additional communication loss.

4 Conclusions

The detailed examinations in [1] show that our “standard” parallel version of
an optimised sequential 3D-CFD solver has (at least) three sources of parallel
inefficiency: Besides the obvious overhead due to inter-processor communication,
the change from F77 to C++ compilers is a factor of 3.2 However, the biggest
loss is due to the weakened numerical efficiency since only blockwise smoothers
can be applied. Consequently, the number of multigrid cycles strongly depends
on the anisotropic details in the computational mesh and the number of paral-
lel processors. As a conclusion, for many realistic configurations, more than 10
processors are needed to beat the optimised sequential version in FeatFlow.
Thus, new and improved numerical and algorithmic techniques have to be devel-
oped to exploit the potential of recent parallel supercomputers and of modern
Mathematics at the same time (see [3] for a discussion).

References

[1] Sven H.M. Buijssen. Numerische Analyse eines parallelen 3-D-Navier-Stokes-
Lösers. Diploma Thesis, Universität Heidelberg, 2002.

[2] M. Schäfer and S. Turek. Benchmark computations of laminar flow around cylin-
der. In E. H. Hirschel, editor, Notes on Numerical Fluid Mechanics, volume 52,
pages 547–566, Wiesbaden, 1996. Vieweg.

[3] Stefan Turek. Efficient Solvers for Incompressible Flow Problems - An Algorithmic
and Computational Approach. Springer-Verlag, Berlin Heidelberg, 1999.

1 Replacing ILU smoother by SOR results in less degeneration, but longer run time.
Jacobi smoothing is at no time competitive, it represents an upper run time bound.

2 PCs and Sun systems were tested, too; similar behaviour was observed.


	1 Numerical and Algorithmic Approach
	2 Comparison of Sequential vs. Parallel Implementation
	3 Examination of Parallel Efficiency
	4 Conclusions
	References

