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Abstract. We study the problem of information-theoretically secure en-
cryption in the bounded-storage model introduced by Maurer [10]. The
sole assumption of this model is a limited storage bound on an eavesdrop-
per Eve, who is even allowed to be computationally unbounded. Suppose
a sender Alice and a receiver Bob agreed on a short private key before-
hand, and there is a long public random string accessible by all parties,
say broadcast from a satellite or sent by Alice. Eve can only store some
partial information of this long random string due to her limited storage.
Alice and Bob read the public random string using the shared private
key, and produce a one-time pad for encryption or decryption. In this
setting, Aumann, Ding, and Rabin [2] proposed protocols with a nice
property called everlasting security, which says that the security holds
even if Eve later manages to obtain that private key. Ding and Rabin
[B] gave a better analysis showing that the same private key can be se-
curely reused for an exponential number of times, against some adaptive
attacks.

We study this problem from the approach of constructing randomness
extractors ([I3ITTEITS] and more), which seems to provide a more in-
tuitive understanding together with some powerful tools. A strong ex-
tractor is a function which purifies randomness from a slightly random
source using a short random seed as a catalyst, so that its output and its
seed together look almost random. We show that any strong extractor
immediately yields an encryption scheme with the nice security prop-
erties of [2J5]. To have an efficient encryption scheme, we need strong
extractors which can be evaluated in an on-line and efficient way. We
give one such construction. This yields an encryption scheme, which has
the same nice security properties as before but now can encrypt longer
messages using a shorter private key. In addition, our scheme works even
when the long public random string is not perfectly random, as long as
it contains enough amount of randomness.

1 Introduction

Almost all cryptographic protocols in use today are based on some intractability
assumptions. That is, adversaries are assumed to be computationally bounded,
and some problems are assumed to be computationally hard. However, no such
complexity lower bound has been proved, and in fact it seems to remain far
beyond the reach of current techniques in complexity theory. So it is possi-
ble that future advances in cryptanalysis or computer technology may jeopar-
dize the security of today’s cryptographic systems. One extreme then is to look
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for protocols with provable information-theoretical security, which is against an
computationally-unbounded adversary. However, a well-known pessimistic re-
sult of Shannon says that no interesting protocol can be expected. Taking a step
back, it would still be nice if one could prove information-theoretical security
basing only on some minimal and reasonable assumption. Maurer proposed one
such model, called the bounded-storage model [10], where the only assumption
is that an adversary has a bounded amount of storage. To exploit such weakness
of an adversary, a very long public random string, accessible by all parties, is
usually employed. With respect to this model, several interesting cryptographic
protocols have been proposed, with provable information-theoretical security.

One important task in cryptography is secure transmission against eavesdrop-
ping, where a sender Alice wants to send a message to a receiver Bob in a way
to keep an eavesdropper Eve from learning the content. Any public-key encryp-
tion scheme unavoidably must be based on some computational lower bound,
as an adversary with unbounded computation power certainly can invert the
publicly-known encryption procedure. To achieve information-theoretical secu-
rity, we have to use private-key encryption. In this paper, we study private-key
encryption using one-time pads in the bounded-storage model. Assume Alice
and Bob share a private key beforehand, say sent from Alice to Bob via today’s
public-key encryption. Then a long public random string X of length n is gen-
erated, say broadcast from a satellite or sent by Alice, which is accessible by
all parties. Eve only has a storage of vn bits, for some constant v < 1, so she
can only store some partial information about X. To be reasonable, the same
storage bound is also imposed on Alice and Bob. Alice and Bob read the string
X on the fly, and compute a one-time pad Z. Then Alice encrypts her message as
C = M @ Z and sends C to Bob. When X is sent, Eve computes and stores some
vn bits of information about X, hoping later to recover M after eavesdropping
the cipher-text C'. In this setting, Aumann, Ding, and Rabin [2] gave protocols,
improving those of Maurer [I0] and Cachin and Maurer [4], which enjoy a nice
provable property called everlasting security. This is an information-theoretical
security that will last even if Eve later after the transmission manages to ob-
tain that private key, say by breaking that public-key encryption. Such a feature
seems quite attractive, as the security is guaranteed by the limitation of current
storage technology, and will not be affected by future advances of any kind. It
is possible as some crucial information has been lost forever. Shortly after, Ding
and Rabin [5] gave a better analysis showing that the same private key in [2]
can be securely reused for an exponential number of times in a way that each
encryption remains secure even after revealing all previous plain-texts.

Observe that as Eve can only store vn bits of information @ from the n-bit
random string X, very likely a substantial amount of randomness still remains in
X relative to @. The remaining randomness may be crude and not directly ap-
plicable, so one would like to have it purified. This is exactly the issue addressed
in the research on constructing the so-called extractors, first explicitly defined
by Nisan and Zuckerman [I3]. Extractors turn out to have many important ap-
plications (see [II] for a survey) and have become a subject of intense study,
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with a break-through by Trevisan [16]. An extractor is a function that given
any source with enough randomness uses a short perfect random seed to extract
many bits which are close to random. We can use the output from an extractor
as a one-time pad for encryption as it looks random to Eve. A strong extractor
is an extractor with a stronger guarantee that its output and its seed together
are close to random, which gives the following nice properties. On one hand,
with high probability, the output of the extractor still looks random even given
the value of the seed, which guarantees the property of everlasting security of [2]
discussed above. On the other hand, with high probability, the seed still looks
random even given the output value of the extractor, which implies that the
same private key can be reused again for the next encryption even if Eve knows
the pads of previous encryptions. Formally, we show that any strong extractor
immediately yields an encryption scheme with everlasting security, against an
exponential number of adaptive attacks, the same property enjoyed by protocols
of Aumann, Ding, and Rabin [25].

However, for practical consideration, not every strong extractor is suitable for
an encryption scheme in the setting we consider here. As the public random string
is broadcast at a very high rate and each party does not have enough memory
to store the whole string, we need a strong extractor that can be evaluated in
an on-line and very efficient way. Existing extractor constructions fail to meet
this criterion. One way of constructing extractors, introduced by Trevisan [16],
is to encode the input string using some list-decodable code and then project
that codeword onto some dimensions determined by the random seed as output.
A list-decodable code, roughly speaking, is a code guaranteeing some upper
bound on the number of codewords in any Hamming ball of certain radius.
The work of Aumann, Ding, and Rabin [2l5] can also be understood within this
framework. Suppose the security parameter is k, so that Eve can only distinguish
different messages with an advantage 2~*. One of the main technical work in [2/5]
can be seen as constructing a list-decodable code mapping from an n-bit string
to an n?*)-bit codeword, where each bit of a codeword is the parity of O(k)
input bits. For an extractor with one output bit, they encode the input, pick a
random dimension of that codeword, and output the bit there, needing a seed
of length O(klogn) for sampling. To output m bits, they independently choose
m random dimensions, and project that codeword onto those m dimensions,
needing a seed of length O(mklogn). So in their encryption scheme, a private
key of length O(mklogn) is required to encode a message of length m. That
is, in order to achieve the everlasting security, they need a private key much
longer than the message, which may limit the applicability of their protocol.
Our improvement comes from two directions. First, we construct a list-decodable
code mapping an n-bit string onto a codeword of length n2°®*) where each bit
of a codeword is again the parity of O(k) input bits. To have an m-bit output,
if we simply project the codeword onto m random dimensions, needing a seed of
length O(m(k+logn)), we already have improvement over that of [2J5]. For large
m, we follow the approach of [I6JT5] by picking some pseudo-random collection
of m dimensions, instead of m random dimensions, for projection. As a result, for
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any m < n?Y with v € (0,1), we only need a seed of length O((logn + k)?/logn).
Note that n is typically much larger than k. If we assume or choose n = 22(*)
we get an encryption scheme using a private key of length O(logn), which is a
dramatic improvement over [25].

To encrypt an m-bit message, Alice and Bob need to prepare m families of
O(k) indices and remember them. We use random walk on expander graphs and
some set system to determine those m families, which seems to cost some extra
computation compared to [2]5]. However, this small extra effort is only required
during the preprocessing phase, when computation time may not be a concern,
so hopefully would not be an issue from a practical point of view. During the
broadcast of the long public random string X, what we do is exactly the same
as that of [2J5]. That is, Alice and Bob compute the m-bit one-time pad, where
each of the m bits is a parity of O(k) bits from X, which can be done in an
extremely fast way.

Our protocol enjoys the following key expansion property, which is addressed
by a new result of Dziembowski and Maurer [6]. In [2], to generate a one-time
pad of length m, Alice and Bob need to first agree on a private key of length
O(mklogn), much longer than the pad they want to generate. In [B], a key
doubling technique is used to generate a one-time pad of length m using a pri-
vate key of length O(klogn), but it requires a public random string of length
O(nklogmlogn), much longer than Eve’s storage bound vn. So an open ques-
tion was whether one could generate a pad longer than the private key while
using a public random string only slightly longer than Eve’s storage bound. The
main contribution of Dziembowski and Maurer [6] is to settle this question, and
they need a private key of length O(klogn). Independentl, we also settles
this question but via a very different method, needing a private key of length
O((k + logn)?/logn), which is smaller than theirs for & = O(log®n). Both [6]
and our result allow the ratio between the length of public random string and
Eve’s storage bound to be arbitrarily close to one. On the other hand, we do not
require the long public random string X to be perfectly random, while this is
not clear in [0]. In reality, perfect random sources may not be available and one
may have to rely on sources of lower quality. Our scheme works as long as X
contains enough amount of randomness, which only needs to be slightly larger
than Eve’s storage bound.

In addition to obtaining a better construction, we try to place this line of
research in an appropriate framework, where ideas could be understood in a
more intuitive and perhaps deeper way and various powerful tools have been
developed. Most of the techniques we use are standard in the research area
on pseudo-randomness. The idea of using extractors in such a setting actually
appeared before in the work of Cachin and Maurer [4]. Since then, the theory
of pseudo-randomness has made some advancement, which enables us to have a
better understanding and derive stronger results.

Notation, definitions, and some simple facts are given in Section [2. In Sec-
tion B, we prove that any strong extractor gives an encryption scheme with ev-

1 We were not aware of their result when we obtained ours.
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erlasting security. In Section [, we construct an efficient on-line strong extractor
which yields an efficient encryption scheme.

2 Preliminaries

For a positive integer n, let [n] denote the set {1,...,n}. For an n-dimensional
vector m, let m(i), for ¢ € [n], denote the component in the i-th dimension of
m, and let m(I), for I C [n], denote the vector consisting of those m(i)’s for
i € I. For our convenience, we use {—1,1}, instead of the usual {0, 1}, for the
binary values unless noted otherwise. For a positive integer n, let U™ denote
the uniform distribution over {—1,1}", and we omit the superscript n when no
confusion is caused. All the logarithms in this paper have base 2.

The distance between two vectors z,y is defined as dy(x,y) = |{i : (i) #
y(i)}], which is also known as their Hamming distance.

Definition 1. A mapping C : {—1,1}" — {—1,1}" defines a code, with {C(x) :
x € {—1,1}"} as the set of codewords. It is called a list-decodable code with
parameter (3 —¢e, L), or a (3 —e, L)-list code, if for any z € {—1,1}", there are
at most L codewords within distance (% —e)n from z.

We also need a way to measure how close two distributions are.

Definition 2. The distance between two distributions A, B is defined as ||A —
Bl|=1> |Pr[A=2]—Pr[B=2]|.

This is usually called the variational distance, and it is easy to verify that ||A —
B|| < 1. We say that a distribution is e-random if its distance to the uniform one
is at most e. Here is a simple but useful lemma, which is proved in Appendix[Al

Lemma 1. Suppose the distribution A is independent of distributions B and
B'. Then for any function g, |[{g(4, B), B) — (9(A, B'), B')|| = |B — B'|.

We need a measure to quantify the randomness contained in a slightly random
source. Shannon’s entropy function captures the average randomness of a source,
while we need some worst-case measure of randomness instead.

Definition 3. For a distribution X, its min-entropy is defined as Hoo(X) =
minr log @ .

So Hoo(X) > r iff Pr[X = z] < 277 for any z. For a distribution with enough
randomness, guaranteed by its min-entropy, we look for a procedure that can
purify the randomness by using a short random seed as a catalyst.

Definition 4. A function EXT : {—1,1}" x {—1,1}* — {—=1,1}™ is called a
strong (r,€)-extractor if for any distribution X over {—1,1}" with Hyo(X) > r
and for'Y = U?®, the distribution of (EXT(X,Y),Y) is e-random.
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The usual definition of extractors only requires the distribution of EXT(X,Y)
being e-random. The stronger requirement of a strong extractor EXT gives the
following nice property. With high probability, the distribution of EXT(X,Y)
still looks random even given the value of Y, and also with high probability, the
distribution of Y still looks random even given the value of EXT(X,Y"). This is
guaranteed by the following lemma, which is proved in Appendix [Bl.

Lemma 2. Suppose the distribution (A, B) is e-random. Then the probability
over b € B that the distribution (A | B = b) is not \/e-random is at most 2+/c.

We consider private-key encryption schemes using one-time pads. In such a
scheme, a sender Alice and a receiver Bob first agreed on a private key Y and
then later generate a one-time pad Zy so that the message M is encrypted as
C = M & Zy, where ® denote the bit-wise exclusive or operation. Note that an
eavesdropper Eve with C' knows M iff she knows Zy. So for the security of such
a scheme, it suffices to show that Zy looks random to Eve. An even stronger
notion of security is the following, introduced by Aumann, Ding, and Rabin [2].

Definition 5. A private-key encryption scheme is said to have everlasting se-
curity of degree k, if with probability at least 1 — 2% the distribution of Zy
remains 2% -random conditioned on Eve’s information and Y .

This guarantees that even if Eve is given that private key Y afterwards, she is
still unlikely to know anything about the message M.

3 Everlasting Security from Strong Extractors

In this section, we show that using a strong extractor for encryption guarantees
the everlasting security of [2[5]. Recall the following scenario. Before the trans-
mission of an m-bit message M, a sender Alice and a receiver Bob agree on a
random private key Y. Then they read the n-bit public random string X, com-
pute the one-time pad Z, and the encrypted message C' = M & Z is sent from
Alice to Bob. An adversary Eve uses a function f to store vn bits of information
Q@ = f(X) from the public string X, and then eavesdrops the encrypted message
C. If later Eve is given that private key Y, can she obtain any information about
M?

For the security parameter k, which is usually much smaller than n, choose
e =272k Pick p < 1—v, say g = 0.99—v, so that 2=(1=#=)" < £ and let r = pun
. We will use a strong (r, §)-extractor ExT : {—1,1}" x {-1,1}* — {-1,1}".
The private key Y is selected randomly according to the distribution U® and
the one-time pad is generated as Z = EXT(X,Y). For M = C & Z, Eve knows
M iff she knows Z, so for the security, it suffices to show that Z looks random
to Eve even given Y. The idea is that X conditioned on @ is likely to contain
enough randomness, so for a strong extractor EXT, very likely the distribution
of Z = ExT(X,Y) would still look random even given the value of Y. Here is
the key lemma.
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Lemma 3. [[(f(X),Y,ExT(X,Y)) - (f(X),U*,U™)|| <.

Proof. First, note that ||{f(X),Y,EXT(X,Y)) — (f(X),U™, U®)|| equals

ZPr IV EXT(X,Y) | f(X) = ) = (U™ U | f(X) = g)ll.

We call a value ¢ € {—1,1}*™ bad if Pr[f(X) = ¢] <2~(=#7" and let B denote
this set of bad ¢’s. For ¢ ¢ B, Pr[X =z | f(X) = ¢] < 277/2-(0—mn = g—un
for any x, so Hoo(X | f(X) = ¢q) > un. Then for ¢ ¢ B,

1Y, ExT(X,Y) [ f(X) = ¢) — (U, U™ | f(X) = g
1KY, ExT((X | f(X) =q),Y)) = (U U™

€

< —.

-2

For ¢ € B, we only have |(EXT(X,Y),Y | f(X)=¢) — (U™ U* | f(X)=¢q)|| <
1, but fortunately it is unlikely to have a bad q as

SOPHf(X) =g < 3 2 wn

qeB qEB

< ow=14pu)n
<

m\m

Thus,

1{f(X ) YEXT(X Y)) = (f(X), 0%, 0™
Z ] [[Y, ExT(X, Y) [ f(X) = ¢) = (U, U™ [ f(X) = g
Z

)=gq]- 1—|—ZPr

q¢B

IA
w\m

€eB
+

IN

<
2

RECTRO-S

O

Now according to Lemmal2] even if Eve saved the information f(X) and later
obtains the private key Y, the distribution of ExT(X,Y) is still 2~ *-random
with probability at least 1 — 27%*1. That is, it gives an encryption scheme with
everlasting security of degree k.

Just like previous work, we assume above that the public string X is perfectly
random. However, such a perfect random source may not be available in reality,
and one may need to rely on sources of lower quality. Note that our proof above
actually works for any source X of length n’ > n with Ho,(X) > n. That is, our
result holds as long as Eve’s storage bound is at most a fraction v of the source’s
min-entropy.
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3.1 Reusing the Same Private Key

Next, we show that the same key can be reused an exponential number of times,
even given all previous one-time pads. Now the idea is that for a strong extractor
EXT, very likely the distribution of Y would still look random even given the
value of EXT(X,Y), so the same Y could be used again to extract randomness
in the next round.

Consider the following scenario, with K messages My, Mo, ..., Mg to be
transmitted. For ¢ € [K], Alice reads the i-th block of n-bit public random
string X;, computes the i-th pad Z; = ExXT(X;,Y), and sends the encrypted
message as C; = M; @ Z; to Bob. For i € [K], suppose Eve is also given
Zii—y = (Z1,...,Z;—1) and uses a function f; to store vn bits of information
Qi = fi(Xy,Qi—1, Z};—1)) from the public string X;. Finally, Eve eavesdrops the
encrypted message Ci and is given Y, can she learn anything about Mg? For
the security, again it suffices to show that Zf looks random even given Zx_q),
Qx,and Y. We choose ¢ = 273 = yn, and use a strong (r, 5 )-extractor EXT.
Here is the key lemma.

Lemma 4. For anyi € N, |[(Z};_1),Q:,Y, Zi) — (Z}i—1), Qi, U, U™)|| < ie.

Proof. We use induction on 4. Lemma Bl handles precisely the case i = 1. So
assume it holds for some ¢ > 1 and let’s consider the case i + 1. By triangle
inequality, we have

|| <Z[1] 5 Qi+17 Y7 Zi+1> - <Z[Z]) Qi+1a Us? Um> H
< {Z1q); Qit1, Y, EXT(X;41,Y)) — <Z[i]7Qi+1aY/7EXT(Xi+1aY/)>” +
1{Z1i), Qir1, Y EXT(Xiy1,Y')) — (Zpay, Qinr, U, U™,

where Y’ is the distribution U® which is independent of Zp;. The first term is
about how random Y remains after i iterations, while the second term is about
how good the (i + 1)-th extraction is using a new random key Y. In the first
term, Qi1 = fir1(Xiy1, @i, Z)), and Xiyy is independent of Q;, Zj;, Y, and
Y’. Then according to Lemmalll, the first term equals

1(Z1i), Qi,Y) — (Z1), Qi, Y| = {21, Qi, Y) — (Z1a), Qi, UP) ||
= ||<Z[i71]aQi7K Zl> - <Z['L71]aQi7 Us7 Z’L>||

< ig,

where the inequality is from the inductive hypothesis. In the second term, X1
is independent of Z[;j, so only Q41 affects the distribution of X; ;. Then using
an argument similar to the proof of Lemma Bl the second term can be bounded
above by e. Therefore, we have

1{Z1i), Qit1, Y, Ziv1) — (Zq); Qir1, US, U™ || < (i + 1)e,

which proves the inductive step and thus the lemma. a
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For K < 2%, the distance is at most 272*. Then according to Lemmal[J, even
given the previous pads Z1,..., Zkx_1 and the private key Y, the K-th pad Zg
is still 2~*-random with probability at least 1 —27%*1. So we have the following
theorem.

Theorem 1. Any strong (un,273F)-extractor yields an encryption scheme with
everlasting security of degree k, whose private key can be securely reused for 2F
times, against the adaptive attacks discussed above.

4 An On-Line Strong Extractor

Although using any strong extractor for encryption does provide a good secu-
rity guarantee, not any arbitrary strong extractor is suitable in the setting we
consider here. Recall that the public random string X is very long so it needs
to be broadcast at a very high rate. Alice and Bob do not have enough memory
to store the whole string, so they would like to be able to apply the extractor
in an on-line and efficient way. One way of constructing extractors, introduced
by Trevisan [16], is based on list-decodable codes. In order to have an efficient
on-line strong extractor, we need a list-decodable code with an efficient on-line
encoding procedure. The main work of [2]5] can be seen as constructing one such
code, where each output bit of a codeword is a parity of a small number of input
bits. Here we give another code with a better parameter.

4.1 An On-Line List-Decoding Code

We will use some type of graphs called expander graphs which have their second
largest eigenvalue bounded away from their largest oned.

Lemma 5. [7[8] There exists an explicit family of expander graphs (Gp)nen
with the following property. There is a constant d and a constant A < d such
that for every n € N, G,, is a d-reqular graph of n vertices with the second largest
etgenvalue .

Expander graphs enjoys some pseudo-random properties, and we will use the
following one.

Lemma 6. [1] Suppose G is a d-regular graph with the second largest eigenvalue
A, and B is a set containing at least o fraction of G’s vertices. Then a t-step
random walk on G misses B with probability at most B = (1 — o+ (3)?)!/2.

In fact, this probability is not far off away from the probability (1 —«)* achieved
by sampling t vertices randomly and independently, but now we only need log n+
tlogd = logn + O(t) random bits for sampling, instead of tlogn random bits.
Observe that smaller % gives smaller §,. This ratio could be reduced to ( %)1 by

2 The eigenvalues of a graph’s adjacency matrix are called the eigenvalues of that
graph.
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considering the graph G*, but then each step of a walk on G* would need ilogd
bits, instead of log d bits, to sample.

Let G denote one such d-regular expander graph on n vertices. For a vertex
v and for w € [d]*, let W (v, w) denote the sequence of ¢ vertices visited by a ¢-
step walk on G starting from v and then following the directions w(1), ..., w(¢).
Consider the encoding Ecc; : {—1,1}" — {—1,1}", for i = nd'2?, defined in
Figure [

— Input: z € {-1,1}".

— Output index: (v,w,b) € [n] x [d]" x {0,1}".

— Algorithm:
e Do a t-step walk on G to get Wg(v,w) = (v1,...,v:).
e Output the bit indexed by (v, w,b) as

Ecc(z)(v,w,b) = H x(v;)"?.

ic[t]

Fig.1. The code Ecc:

Note that the bit Ecc,(z)(v, w,b) = [[,¢y x(v;)*® is just the parity of at
most ¢ input bits, those bits z(j)’s with j = v; and b(¢) = 1. Suppose one had
(v,w,b) and derived those indices j beforehand. Then when z is given, the bit
Ecci(x)(v,r,b) can be computed in an on-line and extremely fast way.

To show that this is a good list-decodable code, we would like to bound the
number of codewords within any Hamming ball of some radius. The Johnson
bound in coding theory (e.g. Chapter 17 of [9]) provides one such bound for
codes with some minimum distance guarantee between any two codewords. It
cannot be applied directly to our code EccC; as some codewords are in fact
close to each other. However, we do have some distance guarantee between some
codewords, as shown by the following lemma.

Lemma 7. For any z,y € {—1,1}" with dg(x,y) > an, dg(Ecci(z), EcCi(y))
> (3 = Ba)in.

Proof. Let B = {v € [n] : 2(v) # y(v)}, which has at least an elements. Consider
any walk (vy,...,v;) € [n]* that hits B, say at v;, with z(v;,) # y(v;, ). For any
assignment to b, flipping the bit b(ip) flips exactly one value of z(v;, )" ) and
y(v;,)°0) and thus exactly one value of [Lcpy z(v;)’® and [Lepy y(v;)?@. Then
for such a walk that hits B,

. . 1
P )P0 — RO
A IT () IT (v 5

i€ [t] 1€[t]
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According to Lemma [0, a ¢-step random walk on G misses B with probability
at most (. So,

P [ECCy(x)(v, 7, b) = ECci(y)(v, 7, b)

v,w,

< Pr [Wg(v,w) misses B] +

v,w,b

b(’L) _ b(z) hi B
vwb Hac Hy | We (v, w) hits

1€[t] 1€[t]
1

< —
< ot 3

where Wg (v, w) = (v1,...,v¢) in the first inequality. Then,

dy(Ecc(z), Eccy(y)) = <1 — vgf,b [Ecc(x)(v,r,b) = Eccy(y) (v, r, b)]) n

> (;—@ 7. ]

Now for each codeword Ecc;(z), the only possible codewords with distance
less than (3 — 3, )7 from Ecc,(z) are those Eccy(2')’s with dp(z,2') < an, and
there are at most 2"(®)™ such codewords, where h(a) = a/log L4(1-a)log
is the binary entropy function. Choose o = 1 + (A) — 6%t s0 B, < 6. Then

the following lemma implies that our code Ecc; is a ( — 9, 2};(;2)") list code. It
can be seen as a generalization to the Johnson bound, and our proof generalizes
the version given in Appendix A of [3].

Lemma 8. Suppose Ecc C {—1,1}" is a code such that for any codeword c €

Ecc, there are at most M codewords in EECC within distance (% — B)a from c.

Then for any z € {—1,1}" and any § > /B3/2, the number of codewords within
distance (3 — &)n from z is at most M /(462 — 2[3).

Proof. For any two vectors u,v € {—1,1}", let « ®v denote their inner product,
and note that

uov= Y u()() = {7 u(@) = v@} - i ul@) # v@)}
jeln]
Suppose ¢; = Eccy(z1),...,c. = Ecci(xr) € {—1,1}" are those codewords
within distance (1/2 — 0)7 from z. For ¢ € [L], let u; € {—1 1}” represent the
discrepancy between ¢; and z, with u;(j) = ¢;(j)2(j) for j € [n] [. Define

r=(Tu)o (T
i€ i€[L]
3 In [B], wi(j) is defined as 1 if ¢;(j ) = z( i) and 0 otherwise. Our definition makes the
proof slightly cleaner.
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On one hand,

T= > uild)

Jeln] \i€ll]
2
1 )
JEln] i€[L]

from Cauchy-Schwartz inequality. As Zje[ﬁ] u;(j) = ¢; ®z > 20n for any i € [L],
we have

2

T>

i€[L] je[n]

S| =

1 2
> —(26nL
> < (260L)
=452
On the other hand, we can write
i€[L]i'€[L]

For i € [L], let N(i) = {¢' € [L] : dg(z;,zy) < an}. For i’ ¢ N(i), we have
u; @ uy < 207. For i € N(i), we only have u; ® uy < @1, but [N(i)| < M. So

T = Z Z Uz@%‘i'z Z Ui O Uy

1€[L] ' €N (3) 1€[L] /&N (3)
< aML+ 2paL?,

Combining the two inequalities, we have 462aL? < T < aM L+23nL?, which
implies L < M/ (462 — 28). 0

4.2 Expanding the Output

Given any list-decodable code Ecc’ : {—1,1}" — {—1,1}", it is known according
to [T6/T5] that one immediately gets a strong extractor EXT : {—1,1}" x [n] —
{—1,1} defined as

Ext'(z,y) = Ecc/(z)(y).

That is, the extractor encodes the input string  as Ecc’(z) and projects it onto a
random dimension y. To obtain m output bits, the approach of [2/5] is to project
Ecc/(x) onto m independent and random dimensions, needing m log i random
bits for sampling. That is, they use the extractor EXT” : {—1,1}" x [A]™ —
{—1,1}™ defined as

ExT” (2, (y1,...,ym)) = (Ecc(z)(11), ..., Ecc (@) (ym)) -
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They use a code with 7 = n°®*)  so their extractor needs a seed of length
O(mklogn). Using our code Ecc; for some t = O(k), we immediately have a
extractor of the same quality but needing a seed of length only O(m(k +logn)).

For large m, we can get a dramatic improvement by picking some pseudo-
random collection of m dimensions instead of m random ones for projection. This
is the idea behind Trevisan’s extractor construction [16] and the improvement by
Raz, Reingold, and Vadhan [15]. The pseudo-random projection is determined
by some set system defined next.

Definition 6. [15] A family of sets Si,...,Sm C [s] is called a weak (£, p)-
design if

— Vi, |Si| =¥, and
— Vi, Zj<i2\sq‘ﬂsj‘ < p(m—1).

Lemma 9. [15] For every £,m and p > 1, there exists a weak (¢, p)-design
S1yeeeySm C [s] with s = [ﬁ—‘ﬁ. Such a family can be found in time poly(m, s).

For a random y € {—1,1}%, such a weak (logn, p)-design gives a pseudo-
random collection of m dimensions y(S1),...,y(Sm), where each y(S;) is the
integer in [71] represented by the log 7 bits of y indexed by S;.

Lemma 10. [16]15] Suppose Si,...,Sm C [s] is a weak (logn, p)-design, and
Ecc': {-1,1}" = {-1,1}" is a (5 — 5=, L)-list code. Then the function EXT :

{=1,1}" x {-1,1}* = {—1,1}" defined as
Exr(z,y) = (Ecd/(2)(y(51)),- .., Boc(2)(y(Sm)))

is a strong (r,€)-extractor, for any r > p(m — 1) + log %

To have a strong (un, 2_3k)-extract0r for our encryption scheme, we use our
(% — 6, L)-list code Eccy, with

5 =1
2m23k7
— t = O(k) large enough and 5 = O(1) small enough so that h(a) < p for
a=1+(3)?—6"! and

h(a)n
— L =2 e 2h(a)n+6k+1m2'

Note that p(m — 1) +log 2& = p(m — 1) + h(a)n + 9k + 2 + 2log m. This can be
made smaller than pn for any m < n” with constant v € (0,1), by choosing a
proper p = n?W), Using such a weak (log 71, p)-design and our (1 -6, L) list-code
Eccy, we have the following theorem.

Theorem 2. For any constant v € (0,1), there is a strong (un, 2~3F)-eatractor
with a seed of length O((k+1logn)?/logn) and a output of length n”, where each
output bit is the parity of O(k) input bits.

This, together with Theorem [I], gives the encryption scheme we claim. Recall
that n is typically much larger than k. A larger n provides a higher security but
only costs a negligible slow-down during encryption time. If we assume or choose
n = 2%) then we have an encryption scheme using a private key of length only
O(logn).
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A Proof of Lemma/(dl
I(g(4, B, B) - (9(A, B'), BY)|
- ;zb:;u»r[g(A,B) —¢AB=b]—Prlg(A,B)) = cA B =1
-2 305 IPrlal b = dPrB = 8~ Prla(4b) = B’ =4}
- ;;me, b) = ol [Pr(B = b] — Pr(B' = b
_ % S”[PrB = b] — Pr[B' = ]
15—,

where the second equality holds because A is independent of both B and B’.

B Proof of Lemma 2]

The expectation of ||[(A | B =b) — U||, with b sampled from the distribution B,
is

Pr[A=a|B=0] —

1 1

Pr[B = b|= —
Y Pz =33 nl

1

a,b

1
52

a,b
(A, B) =U||+ B -U]|
< 2e.

Pr((A, B) = (a,b)] - Pr[B = b]iu‘

IA

1 1 1 1
Pr((A, B) = (a,b)] — |A|B‘ + 5% ‘Pr[B =) g

Then the lemma follows from the Markov inequality.
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