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Abstract. In this paper, we show that the natural and most common
way of implementing modes of operation for cryptographic primitives
often leads to insecure implementations. We illustrate this problem by
attacking several modes of operation that were proved to be semantically
secure against either chosen plaintext or chosen ciphertext attacks.
The problem stems from the simple following fact: in the definition and
proofs of semantic security, messages are considered as atomic objects
that cannot be split; however, in most practical implementations, mes-
sages are subdivided into smaller chunks than can be easily manipulated.
Depending on the implementation, each chunk may consist of one or sev-
eral blocks of the underlying primitive. The key point here is that upon
reception of a processed chunk, the attacker can now adapt his choice for
the next chunk. Since the possibility of adapting within a single message
is not taken into account in the current security models, this leaves room
for unexpected attacks.
We illustrate this new paradigm by attacking three symmetric and hybrid
encryption schemes based on the chaining mode in spite of their security
proofs.

1 Introduction

Currently, the strongest definition of security for an encryption scheme cap-
tures the idea that an attacker can adapt his queries according to the previ-
ously received answers. A scheme is said to be secure, if no attacker is able
to distinguish between different scenarios. These definitions exist in several fla-
vors, depending on the allowed scenarios, e.g. Find-Then-Guess (FTG) security,
Left-or-Right (LOR) security, Real-or-Random (ROR) security ([2]). Moreover,
the attacker can be given access to an encryption oracle only, when considering
chosen-plaintext attacks (CPA), or to an encryption/decryption oracle when con-
sidering chosen-ciphertext attacks (CCA). The case of chosen ciphertext secure
modes of operation has been specially studied in [11].
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18 Antoine Joux, Gwenaëlle Martinet, and Frédéric Valette

However, all these definitions consider messages as atomic objects that can-
not be split into smaller pieces. While very convenient from a theoretical point
of view, this approach does not really model the reality of many cryptographic
implementations. Indeed, in real-life implementation, encryption is usually per-
formed “on the fly”, i.e. ciphertext chunks are computed and sent as soon as pos-
sible. The potential attacks induced by such implementations have already been
taken into account in some cryptographic constructions, such as in [7] (signed
digital streams) and in [6] (pseudorandom number generators). However, we are
not aware of any work that takes advantage of this to attack practical imple-
mentations of previously existing schemes. The first example that comes to mind
is the case of encryption with a smart card. Usually, the host computer sends
blocks of plaintext one at a time to the smart card and immediately receives the
corresponding ciphertext block. Thus an hostile host can adapt his next plaintext
block as a function of the previously received ciphertext block. Even when the
encryption is performed by a general purpose computer, messages are divided
into smaller chunks. For example, in SSH ([14]), the plaintext to be encrypted is
stored in a buffer of finite size. Whenever the buffer is full1, it is encrypted and
sent. Moreover, as described in [14], “initialization vectors should be passed from
the end of one packet to the beginning of the next packet“. As a consequence,
even though attackers cannot be adaptive within a buffer, they can adapt from
one buffer to the next, within a single message. Finally, even if several blocks are
stored in the cryptographic component and if buffers are longer than one block,
the attacker can force a dependency between the last block of a buffer and the
first block of the next one.

In the rest of paper, we show how to take advantage of this extra degree
of freedom to attack some modes of operations that were previously thought
(and proven) secure. These cryptanalysis are presented in the Find-Then-Guess
model, described in appendix A. For the sake of simplicity, we will allow the
attacker to be adaptive from one block to the next within a single message. This
mimics the behavior of smart card implementations. Throughout the paper, this
kind of attacker is said to be blockwise-adaptive.

The first and simplest cryptanalysis we present is the attack on CBC mode
of operation. The attacker adapts directly the plaintext block according to the
previous ciphertext block. The proposed attack is very efficient, it uses a small
constant number of queries to the encryption oracle and always succeeds.

The second attack is against an hybrid scheme, called GEM, that was pro-
posed by Coron et al. in [5]. It is an academic attack of higher complexity in
time and memory. However, the attack beats the bound of the security proof.
The main idea is to feed the challenge oracle with message blocks until a colli-
sion appears on the ciphertexts blocks. Then with a single query to a decryption
oracle the attacker can distinguish which message has been encrypted.

Finally we attack the IACBC encryption mode proposed by Jutla in [10]
and proved secure by Halevi [8] in a slightly modified variant. Here the attack
1 To avoid useless waits, the SSH layer can encrypt and send incomplete buffers.

However, this detail is irrelevant at this point.
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exploits some relations between the values used to mask the ciphertext blocks.
As for CBC, the attack is very efficient since the attacker just needs to feed
the encryption oracle with a constant number of queries and always succeeds.
Furthermore, we show in appendix B that this weakness was already present in
the initial proposal of Jutla.

2 Attack on the CBC Mode of Operation

The CBC (Cipher Block Chaining) mode of encryption security has been ana-
lyzed in [2]. It was proved to be secure in the LOR-CPA sense, assuming that the
underlying block cipher is a family of PRP. The definition of this security notion
is standard and can be found in [2]. It is also briefly described in appendix A.
In this section, we briefly recall the CBC encryption mode and then we describe
how it can be attacked when allowing the attacker to be adaptive from one block
to the next within a single message.

Let EK be a block cipher with secret key K and block-size n bits and let M
be the (padded) message to encrypt. M is divided into � n–bit blocks denoted
by (M [1], M [2], . . . , M [�]). A random n–bit initial value IV is generated by the
encryption box. The CBC mode of encryption with random initial value is a
stateless symmetric encryption scheme CBC(EK). The ciphertext blocks C[i]
are computed as follows:

C[0] = IV,

C[i] = EK(C[i − 1] ⊕ M [i])

The transmitted ciphertext is (C[0], C[1], . . . , C[�]).

The crux of the security proof of [2], is that since each message block is
randomized by xoring it with a block cipher output, each new call to EK is
independent from the previous ones and no attacker can succeed unless a ran-
dom collision occurs. However, if C[i − 1] is known when choosing M [i], the
independence is clearly lost and the proof fails.

It turns out that this can be illustrated by a very simple attack in the (block-
wise) FTG-CPA sense. The attack proceeds as follows:

Step 1 The attacker chooses its FTG challenge. This challenge consists of two-
blocks messages M0 and M1, such that M0[2] �= M1[2].

Step 2 The black-box computes the encryption of either M0 and M1, accord-
ing to the value of a random bit b. It transmits (Cb[0], Cb[1], Cb[2]) to the
attacker. The goal of the attacker is now to guess the value of b.

Step 3 The attacker starts the encryption of a test message M ′. It first sends
the first block M ′[1] chosen uniformly at random.

Step 4 The attacker receives the beginning of the encryption of M ′, namely
(C ′[0], C ′[1]). It sends the second block M ′[2] = M0[2] ⊕ Cb[1] ⊕ C ′[1].

Step 5 The attacker receives C ′[2].
Step 6 If C ′[2] = Cb[2] the attacker guesses that b = 0, otherwise it guesses

b = 1.
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We claim that the guess of the attacker is always correct. Indeed, when b = 0
we can check that:

C ′[2] = EK(M0[2] ⊕ Cb[1] ⊕ C ′[1] ⊕ C ′[1])
= EK(M0[2] ⊕ Cb[1])
= Cb[2]

Moreover, when b = 1 we can check that:

C ′[2] = EK(M0[2] ⊕ Cb[1] ⊕ C ′[1] ⊕ C ′[1])
= EK(M0[2] ⊕ Cb[1])
�= EK(M1[2] ⊕ Cb[1])

and thus C ′[2] �= Cb[2]. As a consequence, the attacker can easily find which of
the two challenge messages was encrypted.

One can remark that the proposed attack could be even more efficient. In-
deed, if the attacker can be adaptive during the challenge phase itself (and not
only after, as described above), the test message is no longer necessary and the
adversary can guess the bit b by just seeing the challenge ciphertext.

A simple and efficient countermeasure to this attack could be considered.
The encryption process E can delay the outputs by one block. That is, when
receiving the kth plaintext block, E encrypts and stores it, and returns the
(k − 1)th block of the ciphertext. In this case, an adversary against this scheme
cannot adapt each plaintext block according to the previous ciphertext block
during the encryption process, and the above attack fails. This scheme will be
called the Delayed Cipher-Block Chaining and will be denoted by DCBC.

Remark 1. The same cryptanalysis can also be mounted against the ABC en-
cryption mode (Accumulated Block Chaining) proposed by Knudsen in [12].
However we do not explicitly describe the attack which is related to the proof
by Bellare et al. in [1] that ABC mode of operation with public or secret ini-
tial value is not a secure OPRP. We just remark here that this attack is possible
since each plaintext block is masked with the previous ciphertext block and with
a value issued from a function h evaluated at the previous plaintext block. As
the h function is not kept secret, the attacker can predict the mask values and
adapt each message block accordingly.

Remark 2. In many cases, encrypted messages are also authenticated using a
message authentication code (MAC). It is known from recent papers [3] that the
right way of doing this is the Encrypt-Then-MAC paradigm. When encryption
and authentication are correctly combined, the complete system was shown to
be CCA secure in the current security model. However, it is easily remarked that
adding authenticity does not prevent the above attack.
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3 An Hybrid Example: The GEM Schemes

Two chosen ciphertext secure asymmetric encryption schemes for messages of
arbitrary length, GEM-1 and GEM-2, have recently been presented in [5]. In
fact they are based on an hybrid construction using an asymmetric encryption
scheme and a block cipher. The security proof is made in the random oracle
model with a very weak assumption on the underlying block cipher: any fixed-
length indistinguishable secure symmetric scheme can be used.

In this section we show how to cryptanalyze these schemes with help of our
new kind of attacks. In order to simplify the analysis of the attack, we assume
that the underlying symmetric encryption scheme is the XOR, as proposed in
the original paper. We mount a chosen ciphertext attack in the sense of the
indistinguishability of the encryption. This proposed attack is blockwise-adaptive
in a stronger sense than the attack against CBC encryption. Indeed, in the case
of GEM, the attacker needs to be adaptive during the challenge transmission
phase. We will focus on the first scheme GEM–1, but the same attack can be
mounted against the second, GEM–2.

3.1 Overview of GEM–1

Let us briefly describe the GEM–1 scheme according to [5]. The system makes
use of several cryptographic primitives, a trapdoor one way function Epk (such
as RSA) and a weak symmetric encryption scheme EK . In fact, using the XOR
function is proposed by the authors. The scheme also makes use of a family of
hash functions Hi and of an additional hash function F which are modeled as
random oracles. For practical instantiations, it is proposed to use SHA-1 together
with a counter, i.e. Hi(.) = SHA-1( . ‖ i). The additional hash function F can
be defined similarly using a special value for i, e.g. F = H0.

Given the public key pk, one can encrypt a message M formed of n l–bit
blocks, (M [1], M [2], . . . , M [n]) by randomly choosing w and u and by computing
the ciphertext (T1, C[1], C[2], . . . , C[n], T2) as follows:

T1 = Epk(w, u)
k1 = H1(w, T1)

C[1] = Ek1(M [1])
ki = Hi(ki−1, M [i − 1], w)

C[i] = Eki(M [i])
T2 = F (kn, M [n], w)

This is summarized in figure 1.

3.2 Attack on GEM–1

The security of GEM–1 is proved in [5] in the random oracle model, assuming
that Epk is “reasonably” secure, even when EK is quite weak (a simple XOR
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Fig. 1. The GEM–1 algorithm.

suffices). Without writing down the explicit security bound given for GEM–1,
let us remark that the advantage of a CCA adversary in the usual security model
is linear in the size of the processed data. As a consequence, square-root attacks
are ruled out by the security proof.

In this section, we show that this is no longer the case when using a blockwise-
adaptive attacker and give an explicit square-root attack using such an attacker.
Note that the proposed attacker is blockwise-adaptive during the challenge phase
itself.

The attacker needs to transmit a challenge of size O(2n/2) where n is the size
in bits of the Ci values. In other words, this can be described as a square-root
attack.

For the sake of simplicity, we assume that the XOR function is used as
symmetric encryption. The important property of the XOR function for our
purpose is that for a given pair consisting of one plaintext block and its related
ciphertext block, the encryption key is uniquely determined. With a different
block cipher algorithm, several keys could be possible. However, when the block
size and the key size are both equal to n, the number of possible keys is always
small. As a consequence, the proposed attack would still have a good probability
of success with an ordinary block cipher.

After constructing its challenge message and getting the corresponding ci-
phertext, the attacker asks for the decryption of a different (but of course re-
lated) message. This decryption message tells him which of the two challenge
messages was encrypted with probability 1.

The attack goes as follows:

Step 1 The attacker chooses and transmits the first block of each challenge
message, M0[1] and M1[1], such that M0[1] �= M1[1]. At this point in time,
the attacker has not yet decided the length of the challenge messages.

Step 2 The encryption box computes the tag T1, picks a bit b in {0, 1}, encrypts
Mb[1] and returns (T1, Cb[1]).
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Step 3 The attacker now sends the second block of each challenge message
M0[2] = M0[1] and M1[2] = M1[1].

Step 4 The encryption box encrypts Mb[2] and returns Cb[2].
Step 5 The attacker continues to send the challenge messages one block at a

time, with M0[i] = M0[1] and M1[i] = M1[1]. It receives the encrypted blocks
Cb[i] and waits for a collision among these encrypted blocks.

Step 6 When a collision occurs, namely when the attacker receives a ciphertext
block Cb[i] such that there exists j < i with Cb[i] = Cb[j], the attacker tells
the encryption box that the challenge messages are complete.

Step 7 The encryption box computes and returns the tag T2.
Step 8 The attacker now requests the decryption of the truncated ciphertext

(T1, Cb[1], . . . , Cb[j], T2). This decryption is either a truncation of M0 or a
truncation of M1. The attacker guesses b accordingly.

In order to check that the attacker always succeeds, it suffices to verify the
validity of the tag T2 for the truncated message. For the original message, T2
was computed as F (ki, Mb[i], w). When decrypting the truncated message, w is
the same (since T1 has not changed), and Mb[j] = Mb[i] by choice of the challenge
messages. Moreover, since Cb[j] = Cb[i] thanks to the collision check performed
by the attacker, we have kj = ki. As a consequence, T2 = F (kj , Mb[j], w) is
a valid tag for the truncated message and the truncated plaintext is indeed
returned by the decryption box.

In order to determine the complexity of the attack, we must evaluate the
expected length of challenge messages needed before a collision occurs. Thanks
to the birthday paradox, since the keys and ciphertext blocks are coded on n
bits, collisions are expected after O(2n/2) blocks. According to the security proof
given in [5], no attack in the usual (non blockwise-adaptive) model can be that
efficient.

4 Jutla’s IACBC

In [10,9], Jutla proposes two new encryption modes that provide confidentiality
and integrity in a single pass. One of these modes, IACBC, is a CBC encryption
of the plaintext where the encrypted blocks are hidden by xoring them with a
sequence of masks (S0, . . . , S�−1). For the scheme to be secure, these masks need
to be pairwise independent within each encryption, however full pseudorandom-
ness is not necessary. Furthermore, in [8] Halevi proposed a slight modification
where he generates the mask values using a non cryptographic process. Halevi
then proves the security of the modified scheme in the ROR-CCA sense. The
proof is based on the pairwise independence of the masks. However in the sequel
we use the fact that the masks are not truly independent to attack the scheme
using a blockwise adaptive attacker.

4.1 Overview of IACBC

The IACBC mode works as follows: let EK be a block cipher with block size n
and key length k, along with secret key K1. Let r be a random initial vector
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of n bits used to generate � mask values S0, S1, . . . , S�−1, where � − 1 is the
size in blocks of the message to encrypt. In Jutla’s paper [10], these masks are
generated from t = �log(� + 1)� random and independent vectors Wi, computed
from r+1, . . . , r+t using the block cipher with another secret key K0. To speed up
the generation of the masks, Gray codes are used. With this generation technique
the masks are pairwise independent within a single encryption. Moreover the
sequences of masks are independent between encryptions. In [8] Halevi proves
that second property is not necessary to prove the security of the scheme. Then he
proposes a new method to generate the masks values: let r a random initial vector
of n bits, and M a secret random boolean matrix of dimension n×(log L̄+1+n),
where L̄ is an upper bound on the ciphertext length. For j = 1 to � − 1 we have
Sj = M · (< 2j >, < r >), where (< 2j >, < r >) is the boolean vector of length
log L̄ + 1 + n composed with the binary representation of 2j on log L̄ + 1 bits
and the binary representation of r on n bits. Furthermore S0 = M · (< 2L+1 >,
< r >), where L is the ciphertext length.

Then the ciphertext is generated as follows: the message is divided into �− 1
blocks M [1], . . . , M [� − 1], of n bits each. The ciphertext is defined by:

C[0] = EK1(r)
N [0] = C[0]
for i = 1 to � − 1 do

N [i] = EK1(M [i] ⊕ N [i − 1])
C[i] = N [i] ⊕ Si

end for

C[�] = EK1(checksum ⊕ N [l − 1]) ⊕ S0, where checksum =
⊕l−1

i=1 M [i].

This is summarized in figure 2.
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To decrypt a ciphertext C, the receiver parses it into � + 1 blocks denoted
by (C[0], C[1], . . . , C[�]) and computes r = DK1(C[0]). He can then recover the
mask values (S0, . . . , S�−1) with the help of the secret boolean matrix M . Each
plaintext block M [i] is computed as M [i] = DK1(C[i] ⊕ Si) ⊕ C[i − 1] ⊕ Si−1.
The message integrity is verified by checking the correctness of the Checksum.

4.2 Blockwise Adaptive Cryptanalysis

In this section we exhibit a cryptanalysis of the scheme, in the blockwise adaptive
adversarial model. The main idea is to used deterministic relations verified by
the masks. Indeed, even though the values used for different blocks are pairwise
independent, by construction they satisfy some relations. For every set of masks
S = (S0, S1, . . . , S�−1) and every pair of indices (i, j), Si ⊕ Sj is a constant. To
prove this claim we have to look at the mask generation. We have:

Si = M × (< 2i >, < r >) and Sj = M × (< 2j >, < r >)

Thus we get:

Si ⊕ Sj = M × (< 2i > ⊕ < 2j >, < r > ⊕ < r >)
= M × (< 2i > ⊕ < 2j >, < 0 >)

Then the vector Si ⊕ Sj is independent of r and only depends on some columns
of the secret matrix M . Thus, for every set of masks and every pair of indices,
Si ⊕ Sj is constant. In the attack we will use this fact for S1 ⊕ S2.

The proposed blockwise adaptive attacker is adaptive during the encryption
query but not during the challenge phase itself. However the encryption box
has to send the initial ciphertext block C[0] before it receives the first plaintext
block.

Here is the scenario of the attack:

Step 1 The attacker chooses at random two messages of two blocks M0 and M1
at random and such that M0[1] = M1[1] and M0[2] �= M1[2].

Step 2 The challenge box generates the masks values (S0, S1, S2) from a random
initial value r. It then picks at random a bit b, encrypts r and Mb under the
secret key and transmits Cb[0] ‖ Cb[1] ‖ Cb[2] ‖ Cb[3]. The aim of the attacker
is to guess the bit b.

Step 3 The attacker now queries the encryption box for one message of two
blocks. It first receives C ′[0] and sends M [1] = C ′[0] ⊕ M0[1] ⊕ Cb[0].

Step 4 After receiving C ′[1] the attacker outputs M [2] = M0[2]. Then it re-
ceives C ′[2] and ends the query. The encryption box finally outputs C ′[3].

Step 5 if the equality Cb[1] ⊕ Cb[2] = C ′[1] ⊕ C ′[2] holds, the attacker guesses
the bit b′ = 0, else he guesses b′ = 1.

We claim that the attacker always guesses correctly the bit b. Indeed, suppose
that message M0 has been encrypted, meaning that b = 0. Then we get:

Cb[1] ⊕ Cb[2] = EK(M0[1] ⊕ Cb[0]) ⊕ S1

⊕EK(M0[2] ⊕ EK(M0[1] ⊕ Cb[0])) ⊕ S2
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Furthermore, we have:

C ′[1] ⊕ C ′[2] = EK(M [1] ⊕ C ′[0]) ⊕ S′
1

⊕EK(M [2] ⊕ EK(M [1] ⊕ C ′[0]) ⊕ S′
2

= EK(C ′[0] ⊕ M0[1] ⊕ Cb[0] ⊕ C ′[0]) ⊕ S′
1

⊕EK(M [2] ⊕ EK(C ′[0] ⊕ M0[1] ⊕ Cb[0] ⊕ C ′[0]) ⊕ S′
2

= EK(M0[1] ⊕ Cb[0]) ⊕ S′
1

⊕EK(M0[2] ⊕ EK(M0[1] ⊕ Cb[0])) ⊕ S′
2

Now, we have proved above that S1 ⊕ S2 = S′
1 ⊕ S′

2. Consequently, if b = 0, we
always have Cb[1] ⊕ Cb[2] = C[1] ⊕ C[2].

Moreover, if b = 1 this equality never holds. Indeed, challenge messages M0
and M1 have been chosen such that M0[1] = M1[1] and M0[2] �= M1[2], and the
test message is such that M [1] = C ′[0] ⊕ M0[1] ⊕ Cb[0]. Then it is easy to check
that in this case Cb[1] ⊕ Cb[2] never equals C ′[1] ⊕ C ′[2]. Indeed, we have:

S1 ⊕ S2 = S′
1 ⊕ S′

2

M1[1] ⊕ Cb[0] = M [1] ⊕ C ′[0]
M1[2] ⊕ EK(M1[1] ⊕ Cb[0])) �= M [2] ⊕ EK(M [1] ⊕ C ′[0]))

and as a consequence C ′[1] ⊕ C ′[2] �= Cb[1] ⊕ Cb[2]. Thus the attacker’s guess of
b is always correct.

The crucial step in this attack is the encryption query made by the adversary
and the way in which the oracle returns the ciphertext blocks. Indeed, if the
initial value is not sent before the beginning of the encryption, the adversary
cannot adapt the next plaintext blocks and the attack fails. Thus, if correctly
implemented, IACBC encryption scheme is not subject to such an attack.

Remark 3. Note that the initial IACBC scheme proposed by Jutla in [10] can be
attacked in a similar way. Indeed, even when sequences of masks are independent
between encryptions, it is however possible to find non trivial relations within a
single encryption. This property can be used to cryptanalyze the scheme in the
blockwise adaptive adversarial model. See appendix B for more details.

5 Conclusion

In this paper, we proposed a new class of attacks against modes of operation.
These attacks, called blockwise adaptive, take advantage of the properties of
most practical implementations to allow cryptanalysis of some modes that were
previously thought (and proven) secure. Some other modes of operation do not
seem to be vulnerable to such attacks, especially when there is no chaining (as
in OCB, [13]), or when secret masks are used to randomized inputs and outputs
of the block cipher (as XCBC, [4], and HPCBC, [1]). Furthermore, although the
impact of this attack on the CBC is huge, this can be simply avoided by using
the Delayed CBC (DCBC) that consists in delaying the outputs by one block.
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We believe that dealing with blockwise adaptive attacks is the next step
towards secure implementations of cryptographic modes of operation.
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A Security Notions

In the standard model, privacy of an encryption scheme is viewed as ciphertext
indistinguishability. In [2] the authors have defined different security notions and
proved that the strongest one is the LOR (“Left or Right). However, we focus
here on the Find-Then-Guess (FTG) model. We can modelize this notion through
a “Find-Then-Guess” game. In this setting the adversary is first given access to
an encryption oracle E that he can feed with plaintexts of his choice. At the
end of the first phase (the “Find” phase) the adversary returns two plaintexts
M0 and M1 of equal length. The encryption oracle flips a bit b, encrypts Mb

and returns the challenge ciphertext Cb. The adversary’s goal is to guess with
non negligible advantage the bit b. In the “Guess” phase, he is again given
access to the encryption oracle, he can feed with plaintexts of his choice At
the end of the game, the adversary returns a bit b′ representing his guess. This
attack is called a Chosen Plaintext Attack (CPA). However the adversary can
also performed Chosen Ciphertext Attacks (CCA). In this setting, he also has
access to a decryption oracle he can feed with queries of his choice, except with
the challenge ciphertext Cb itself.

A symmetric encryption scheme is said to be FTG-CPA secure (respectively
FTG-CCA secure), if no polynomial time adversary can guess the bit b in the
respective games, with non negligible advantage.

B Cryptanalysis of the Original Jutla’s IACBC

In the original Jutla’s proposal in [10], the mask generation is slightly different.
The random value r is expanded into t = log(� + 1) random and independent
vectors W1, . . . , Wt such that Wi = EK0(r+i), where K0 is another secret key for
the block cipher. Then � pairwise independent and differentially uniform mask
values (S0, S1, . . . , S�−1) are generated from the Wi, with a Gray Code or with
the following method, proposed in [10]:

input: Wi, for 1 ≤ i ≤ t
output: S0, S1, . . . , S�−1
For i = 0 to � − 1 do

Let < ai[1], ai[2], . . . , ai[t] > be the binary
representation of i + 1

Si =
⊕j=t

j=1 ai[j] · Wj

end for

In [10], Jutla claims the security of IACBC in the sense of the message in-
tegrity and in the Find-Then-Guess model. However no security proof is given
for this claim. In the sequel we show how to attack the scheme in the blockwise
adaptive adversarial model. The attack is similar to the one described section
4: some relations between the masks values are exploited. Indeed, each mask is
defined with the following relation:
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Si−1 =
j=t⊕

j=1

ai−1[j] · Wj

for all 0 ≤ i ≤ l−1 and where < ai−1[1], . . . , ai−1[t] > is the binary representation
of i. Then in particular, we have:

S1 = W2

S2 = W2 ⊕ W1

S3 = W3

S4 = W3 ⊕ W1

Then, for every set of mask, we have S1 ⊕ S2 ⊕ S3 ⊕ S4 = 0.
During the proposed attack the attacker has access to an encryption box

to mount a chosen plaintext blockwise adaptive attack. For this attack a sin-
gle query to the encryption box allows to always guess correctly the message
encrypted. Let us present the attacker’s algorithm:

Step 1 The attacker chooses uniformly two messages of four blocks each M0 and
M1 such that M0[1] = M1[1], M0[2] = M1[2], M0[3] = M1[3] and M0[4] �=
M1[4].

Step 2 The masks values (S0, . . . , S4) are generated from the random r and the
vectors Wi. The encryption box encrypts r, randomly chooses a bit b and
encrypts message Mb under the secret key K and transmits the ciphertext
Cb[0] ‖ Cb[1] ‖ Cb[2] ‖ Cb[3] ‖ Cb[4] ‖ Cb[5].

Step 3 The attacker then queries the encryption box with a message of four
blocks. It first receives C ′[0] and outputs M [1] = M0[1] ⊕ C ′[0] ⊕ Cb[0].

Step 4 The oracle encrypts M [1] and returns C ′[1].
Step 5 The query continues with plaintext blocks defined by: M [2] = M0[2],

M [3] = M0[3], and M [4] = M0[4].
Step 6 After having received C ′[1], C ′[2], C ′[3] and C ′[4], the adversary ends

the game, receives C ′[5] and sends the bit b′ = 0 if

C[1] ⊕ C[2] ⊕ C[3] ⊕ C[4] = Cb[1] ⊕ Cb[2] ⊕ Cb[3] ⊕ Cb[4] (1)

and b′ = 1 otherwise.

Let us look at the equality checked by the adversary. We see that if b = 0 we
have:

Cb[1] ⊕ Cb[2] ⊕ Cb[3] ⊕ Cb[4] = EK(Cb[0] ⊕ M0[1]) ⊕ S1

⊕EK(M0[2] ⊕ Nb[1]) ⊕ S2

⊕EK(M0[3] ⊕ Nb[2]) ⊕ S3

⊕EK(M0[0] ⊕ Nb[3]) ⊕ S4
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where Nb[i] denotes EK(M0[i] ⊕ Nb[i − 1]) for 1 ≤ i ≤ 3. Due to the choice of
the test message, we also have:

C ′[1] ⊕ C ′[2] ⊕ C ′[3] ⊕ C ′[4] = EK(Cb[0] ⊕ M0[1]) ⊕ S′
1

⊕EK(M0[2] ⊕ N [1]) ⊕ S′
2

⊕EK(M0[3] ⊕ N [2]) ⊕ S′
3

⊕EK(M0[4] ⊕ N [3]) ⊕ S′
4

Then if b = 0, since we have S1 ⊕ S2 ⊕ S3 ⊕ S4 = S′
1 ⊕ S′

2 ⊕ S′
3 ⊕ S′

4 = 0 and
N [i] = Nb[i] for 1 ≤ i ≤ 3, equality (1) always holds.

Moreover if b = 1 equality (1) is never satisfied. Indeed we have N [1] =
Nb[1], N [2] = Nb[2] and N [3] �= Nb[3] due to the special choice of the challenge
messages.

Thus the attacker always guesses correctly the bit b.
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