
Random Dynamics Optimum Tracking with

Evolution Strategies

Dirk V. Arnold and Hans-Georg Beyer

Department of Computer Science XI
University of Dortmund

44221 Dortmund, Germany
farnold,beyerg@ls11.cs.uni-dortmund.de

Abstract. Dynamic optimization is frequently cited as a prime applica-
tion area for evolutionary algorithms. In contrast to static optimization,
the objective in dynamic optimization is to continuously adapt the solu-
tion to a changing environment { a task that evolutionary algorithms are
believed to be good at. At the time being, however, almost all knowledge
with regard to the performance of evolutionary algorithms in dynamic
environments is of an empirical nature. In this paper, tools devised orig-
inally for the analysis in static environments are applied to study the
performance of a popular type of recombinative evolution strategy with
cumulative mutation strength adaptation on a dynamic problem. With
relatively little e�ort, scaling laws that quite accurately describe the be-
havior of the strategy and that greatly contribute to its understanding
are derived and their implications are discussed.

1 Introduction

Dynamic optimization is distinguished from static optimization in that in the
former, the objective function is not constant but varies with time. Dynamic op-
timization problems arise in many areas of engineering and computer science, as
for example in the determination of optimal control policies or in connection with
online job scheduling where new jobs arrive in the course of the optimization.
While the goal in static optimization is to locate an optimal solution rapidly and
accurately, the objective in dynamic optimization is to track a moving target as
closely as possible. Strategies for dynamic optimization thus need to continuously
adapt to changes in the environment.

In enumerations of potential domains of application of evolutionary algo-
rithms, dynamic optimization often takes one of the top spots. At the time being,
almost all knowledge with regard to the capabilities of evolutionary algorithms
in dynamic environments is based on empirical observations. An extensive sur-
vey of the literature of the �eld along with a collection of benchmark functions
and a discussion of methods that have been proposed to improve the perfor-
mance of evolutionary algorithms in dynamic environments has been compiled
by Branke [7]. Angeline [1] compares empirically the tracking performance of an
evolutionary algorithm employing a form of mutative self-adaptation with that



of a strategy using a simple heuristic for mutation strength adaptation. The
�tness environment considered is a three-dimensional, spherically symmetric ob-
jective function that is shifted periodically either in a random fashion or on a
linear or a spherical path. Angeline observes that the self-adaptation mechanism
is not without problems in the dynamic case. In that same �tness environment,
B�ack [4] compares di�erent variants of mutative self-adaptation and presents evi-
dence that seems to indicate that the lognormal self-adaptation used in evolution
strategies performs better than the variant of self-adaptation commonly used in
evolutionary programming. Salomon and Eggenberger [12] compare the perfor-
mance of evolution strategies with that of a breeder genetic algorithm on the
sphere, an ellipsoid, and Rastrigin's function, where the coordinates are shifted
by a constant increment in every time step. The search space dimensionalities
they consider for the sphere are N = 10 and N = 30. Without quantifying the
term, they �nd that the sensitivity to the particular implementation of the strat-
egy and to its parameter values is much lower for the tracking task than it is in a
static environment. Without providing details, they also report to have observed
that recombination is not bene�cial for tracking a moving target. Weicker and
Weicker [13] contrast self-adaptation of a single mutation strength with that of
N mutation strengths and adaptation of the full mutation covariance matrix
and �nd that in more rapidly changing environments, the adaptation of more
than a single mutation strength becomes unreliable. Finally, Droste [8] presents
a �rst rigorous analysis of the performance of a (1 + 1)-strategy on a discrete,
dynamic objective function. However, focus in that paper is not on the tracking
behavior of the strategy but rather on the expected time required to �rst reach
the optimum.

While useful for providing the reader with a �rst idea of the capabilities and
the limitations of evolutionary algorithms in dynamic environments, the results
of empirical studies are not always easy to interpret. If one strategy variant is
observed to perform better than another, it is often not obvious what the reasons
for the performance advantage of the former strategy are. Furthermore, it is un-
clear whether the observed results generalize to other settings of the parameters
of the strategies or of the �tness environments. Moreover, it is not clear how
di�cult the task of tracking is, and how to interpret the quality of the results.
Many of the experiments have been conducted with large populations in low-
dimensional search spaces { a case that should arguably be comparatively easy
to handle. It would therefore be desirable to have scaling laws that describe the
in
uence of the parameters of the strategies and of the �tness environment. Not
only would such scaling laws yield an improved understanding of the behavior
of the strategies and their operators and parameters, but they would also allow
for the analytical calculation of optimal strategy parameter values and for the
comparison of the performance of di�erent strategy variants.

In the realm of evolution strategies, much work has been done towards de-
riving such scaling laws in simple static environments. Many of the tools devel-
oped and the main results can be found in the monographs by Beyer [6] and
by Rechenberg [11]. In the present paper, we will see that the tools developed



for static environments can be applied to the analysis of evolution strategies
for dynamic optimization in real-valued search spaces with relatively little ef-
fort. In particular, the tracking performance of the (�=�; �)-ES with cumulative
mutation strength adaptation is studied analytically for a spherically symmetric
objective function the center of which is shifted randomly in every time step. For
that purpose, in Sec. 2 we brie
y introduce and motivate the choice of strategy
and �tness environment. In Sec. 3, we analyze the behavior of the strategy in the
environment thus introduced for �xed mutation strength. In Sec. 4, the perfor-
mance of the mutation strength adaptation scheme is investigated. Finally, Sec. 5
concludes with a summary and a discussion of directions for future research.

2 Preliminaries

In all of what follows, we assume real-valued objective functions IRN ! IR. The
(�=�; �)-ES with isotropic normal mutations in every time step generates � > �
o�spring candidate solutions from a population of � parents and subsequently
replaces the parental population by the � best of the o�spring. Generation of an
o�spring candidate solution consists in adding a vector �z, where z consists of
independent, standard normally distributed components, to the centroid of the
parental population. The standard deviation � of the components of vector �z
is referred to as the mutation strength, vector z as the mutation vector. The av-
erage of those mutation vectors that correspond to o�spring candidate solutions
that are selected to form the population of the next time step is the progress

vector hzi. Note that due to the de�nition of global intermediate recombination,
�hzi connects consecutive centroids of the population. The choice of strategy
is motivated both by the fact that it is relatively amenable to mathematical
analysis and by its proven good performance in static settings.

No evolution strategy in real-valued search spaces is complete without a mu-
tation strength adaptation mechanism. It is necessary for the mutation strength
to be adapted continuously to �t the local characteristics of the objective func-
tion. Two mechanisms that are commonly used for the adaptation of the mu-
tation strength are mutative self-adaptation and cumulative mutation strength

adaptation. While the former is the more popular approach counting the number
of publications, we choose to analyze cumulative mutation strength adaptation
as it is known that mutative self-adaptation is unable to make full use of the ge-
netic repair e�ect in combination with global intermediate recombination. Also
note that while the original algorithm by Hansen and Ostermeier [9, 10] adapts
the entire mutation covariance matrix, the variant considered here uses isotropic
mutations and therefore only a single mutation strength.

The cumulative mutation strength adaptation mechanism relies on the con-
jecture that if the mutation strength is below its optimal value consecutive steps
of the strategy tend to be parallel, and if the mutation strength is too high con-
secutive steps tend to be antiparallel. For optimally adapted mutation strength,
the steps taken by the evolution strategy are uncorrelated. So as to be able
to reliably detect parallel or antiparallel correlations between successive steps,



information from a number of time steps needs to be accumulated. For the
(�=�; �)-ES, the accumulated progress vector s is de�ned by s(0) = 0 and the
recursive relationship

s(t+1) = (1� c)s(t) +
p
c(2� c)

p
�hzi(t); (1)

where c is a constant determining how far back the \memory" of the accumula-
tion process reaches. The mutation strength is updated according to

�(t+1) = �(t) exp

�ks(t+1)k2 � N

2DN

�
; (2)

where D denotes a damping constant. The term N in the numerator of the argu-
ment to the exponential function is the mean squared length of the accumulated
progress vector if consecutive progress vectors are stochastically independent.
The constants c and D are set to 1=

p
N and

p
N , respectively, according to

recommendations made by Hansen [9].
The sphere model is the set of all functions f : IRN ! IR with

f(x) = g(kx̂ � xk);

where g : IR ! IR is a strictly monotonic function of the distance R = kx̂ � xk
of a candidate solution x from the target x̂. The sphere model usually serves
as a model for �tness landscapes at a stage where the population of candidate
solutions is in relatively close proximity to the target and is most often studied
in the limit of very high search space dimensionality. So as to study the track-
ing behavior of evolutionary algorithms, several authors ([1, 4, 12]) have added a
dynamic component to the sphere model by stipulating that the target x̂ varies
with time. Several modes of motion of the target are conceivable and have been
explored empirically. Examples include random motion, linear motion, and cir-
cular motion in search space. For the present paper, we restrict ourselves to
considering random motion and assume that the target at time step t + 1 is
given by x̂(t+1) = x̂(t) + �ẑ, where vector ẑ consists of N independent, standard
normally distributed components. The standard deviation � is a measure for
the speed of the target. The same model has been considered by Angeline [1],
B�ack [4], and Branke [7].

3 Dynamic Sphere

The analysis of the behavior of evolution strategies on the sphere model is greatly
simpli�ed by the symmetries inherent in both the strategies and the environment.
Following an idea introduced by both Beyer [5] and Rechenberg [11], a vector z
originating at search space location x can be written as the sum of two vectors zA
and zB , where zA is parallel to x̂ � x and zB is in the hyperplane normal to
that. We will refer to zA and zB as the central and the lateral components of
vector z, respectively. We de�ne the signed length zA of the central component
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Fig. 1. Decomposition of a vector z into central component zA and lateral compo-

nent zB for the sphere model. Vector zA is parallel to x̂ � x, vector zB is in the

hyperplane perpendicular to that. The starting and end points, x and y = x + �z, of
vector �z are at distances R and r from the target x̂, respectively.

of vector z to equal kzAk if zA points towards the target and to equal �kzAk
if zA points away from it. Fig. 1 illustrates the decomposition.

Using elementary geometry and denoting the respective distances of x and
y = x+ �z from the target by R and r, it is easily seen that

r2 = ( R� �zA)
2 + �2kzBk2

= R2

�
1� 2�

R
zA +

�2

R2
kzk2

�
:

Moreover, we will see that in high-dimensional search spaces, progress of the
strategies requires � � R, making it possible to expand the term in parentheses
around unity and to cut o� after the linear term, yielding

r = R� �zA +
�2

2R
kzk2 + : : : (3)

for the distance of y from the target.
Let us �rst consider the case that z is a mutation vector. Then, as muta-

tions are isotropic, we can without loss of generality assume that zA = z1 and
zB = (0 ; z2; : : : ; zN )T, where the zi, i = 1 ; : : : ; N, are independently drawn from
a standardized normal distribution. The squared length kzBk2 of the lateral com-
ponent is the sum of squares of N�1 terms and as such �2N�1-distributed. Recall

that the �2N�1-distribution has mean N �1 and standard deviation
p
2(N � 1).

With increasing search space dimensionality, the in
uence of the central com-
ponent zA on the squared length kzk2 of a mutation vector decreases more
and more. In the limit of in�nite search space dimensionality, the quotient
(kzk2�N )=N tends to zero, and thus kzk2 is well approximated by N . Therefore,
according to Eq. (3), the di�erence in distance from the target of the centroid



of the parental population and an o�spring candidate solution has normal dis-
tribution with mean ��2N=2R and with variance �2. Note that it is only the
central component of a mutation vector that determines the �tness of the o�-
spring candidate solution; in the limit of in�nite search space dimensionality,
the contribution of the lateral component is the same for all o�spring and thus
selectively neutral. This has been shown more formally using an approach based
on characteristic functions in [2].

For the sphere model, selection ensures that those o�spring candidate solu-
tions with the smallest values of r form the population of the next time step.
Recombination averages those candidate solutions that are selected. As the lat-
eral components of the mutation vectors are selectively neutral in that they
contribute a constant to the �tness of the o�spring they generate, they are in-
dependent. The lateral component of the progress vector is thus a vector in the
plane perpendicular to the direction to the target and of squared length N=�,
where the reduction in squared length by the factor � is due to the independence
of the vectors being averaged. According to Eq. (3), the lateral component of the
progress vector increases the distance to the target by �2N=2�R. The reduction
of that term by the factor � in the denominator has been termed the genetic

repair e�ect.
The central component of the progress vector is the average of those � of the �

mutation vectors that have the largest signed lengths of the central components.
The expected signed length of the central component of the progress vector
is thus c�=�;�, where c�=�;� � 0 is the expected average of the �rst � order
statistics of a sample of � standard normally distributed, independent random
variables. An integral expression for c�=�;� has been derived in [6]. According
to Eq. (3), the central component of the progress vector reduces the distance to
the target by �c�=�;�. Note that while the gain term resulting from the central
components is linear in �, the loss term resulting from the lateral components
grows quadratically. The range of useful mutation strengths is thus limited,
requiring � � R as stipulated above.

So far, we have not considered the motion of the target. For the dynamic
sphere, in every time step, the target takes a random step �ẑ, where ẑ consists
of N independent, standard normally distributed components. In e�ect, that
is the same as the centroid of the population taking a random step ��ẑ. The
consequences of such a step have been investigated above: it leads to a increase
in distance from the target by �2N=2R. Thus, the expected distance between
the target and the centroid of the population at the next time step is

E
h
R(t+1)

i
= R(t) � �c�=�;� +

�2N

2�R
+

�2N

2R
; (4)

where the second and third terms on the right hand side result from the central
and lateral components of the progress vector and the fourth summand is a
consequence of the motion of the target.

After initialization e�ects have faded, the distance from the target of the cen-
troid of the population has a time-invariant distribution. A good approximation
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Fig. 2. Distance from the target R=N for a (3=3; 10)-ES with, from bottom to top,

� = 0 :5,1:0, and 2:0. Search space dimensionality is N = 40 . The crosses are measured

values, the lines re
ect predictions from Eq. (5).

to the mean of that distribution is obtained from Eq. (4) by ignoring 
uctuations
and simply demanding that E[R(t+1)] = R(t) = R. Solving for R yields

R =
N

2c�=�;�

�
�

�
+

�2

�

�
: (5)

Fig. 2 shows that the resulting predictions are quite accurate. The accuracy
increases further with increasing search space dimensionality. It can be seen
that it somewhat decreases with increasing mutation strength as some of the
assumptions made in the derivation of Eq. (3) are violated, but is very good in
the range of mutation strengths where R is small.

Using Eq. (5), the optimalmutation strength can be found by computing the
derivative with respect to � and �nding a root thereof. From

@R

@�
=

N

2c�=�;�

�
1

�
� �2

�2

�

it follows that � =
p
�� is optimal, and Eq. (5) shows that the corresponding

distance from the target is

R =
N�p
�c�=�;�

: (6)

That is, the distance from the target increases linearly with the speed of the
target and can be decreased by increasing the population size. This decrease is
due to the use of global intermediate recombination. To the reader acquainted
with the theory of evolution strategies on the sphere model, it will not come as
a surprise that from � =

p
�� with Eq. (6) it follows that the optimal mutation

strength is � = �c�=�;�R=N . This relationship has long been known to hold for
the static sphere model. We now know that it holds as well when tracking a
moving target with random dynamics.



4 Cumulative Mutation Strength Adaptation

Clearly, when using a mutation strength adaptation mechanism, there is no guar-
antee that the mutation strength that the strategy realizes is optimal; indeed, it
often is not. The performance of the cumulative mutation strength adaptation
mechanism on the static sphere model in the presence of noise has recently been
analyzed in [3]. It has been found that even in the absence of noise, the mutation
strength that the adaptation mechanism realizes is suboptimal due to the fact
that the optimum is approached and that the approach is not instantaneous,
leading to the strategy always trailing behind. The approach pursued in [3] can
be adapted to the dynamic sphere model as follows. Note that due to space
limitations, the derivation necessarily needs to remain sketchy at times.

As mutation vectors and progress vectors, the accumulated progress vector s
can be written as the sum of its central and lateral components, sA and sB.
We write sA for the signed length of the central component and as in Sec. 3
assume without loss of generality that at time t, the direction to the target is
such that sA = s1. Using Eq. (1) and for notational simplicity writing z instead
of hzi for the progress vector, we have

ks(t+1)k2 =
NX
i=1

�
(1� c)s(t)i +

p
c(2� c)

p
�z

(t)
i

�2

= (1� c)2ks(t)k2 + 2(1� c)
p
c(2� c)�

NX
i=1

s
(t)
i z

(t)
i + c(2� c)�kz(t)k2:

The signed length of the central component of a vector equals the inner product
of that vector with a vector of length unity from the centroid of the population
to the target. Therefore, writing x for the centroid of the population and using
Eq. (1), we have

s
(t+1)
A =

�
(1 � c)s(t) +

p
c(2� c)

p
�z(t)

�T x̂(t) + �ẑ(t) � x(t) � �(t)z(t)

R(t+1)

=
R(t)

R(t+1)

"
(1� c)

 
s
(t)
A +

�

R(t)

NX
i=1

s
(t)
i ẑ

(t)
i � �(t)

R(t)

NX
i=1

s
(t)
i z

(t)
i

!

+
p
c(2� c)

p
�

 
z
(t)
A +

�

R(t)

NX
i=1

ẑ
(t)
i z

(t)
i � �(t)

R(t)
kz(t)k2

!#
:

These two equations together with Eq. (2) decribe the development from one
time step to the next of the squared length of the accumulated progress vector,
the signed length of its central component, and the mutation strength. In analogy
to the way we proceeded in Sec. 3, we ignore 
uctuations and assume that all
quantities can be replaced by their expected values. Omitting time superscripts,
for the stationary case it follows that

ksk2 = (1 � c)2ksk2 + 2(1� c)
p
c(2� c)

p
�sAc�=�;� + c(2� c)N; (7)
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Fig. 3. Mutation strength � as a function of the speed of the target � for, from bottom
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where we have used the fact that E[zi] = 0 for i 6= 1 due to symmetry reasons,
that

sA = (1� c)sA +
p
c(2 � c)

p
�

�
c�=�;� � �N

�R

�
; (8)

where �sAc�=�;�=R has been neglected as compared to sA as � � R, and that

� = � exp

�ksk2 �N

2DN

�
: (9)

Solving Eqs. (7), (8), and (9) for the mutation strength yields � = �c�=�;�R=N .
Fig. 3 demonstrates the accuracy of the result. The resulting distance R to
the target is given by Eq. (6). Comparison with the optimal mutation strength
� =

p
�� derived in Sec. 3 shows that cumulative mutation strength adaptation

achieves optimal performance on the sphere model with random dynamics of the
target.

5 Conclusions

In this paper, we have studied the tracking performance of the (�=�; �)-ES on
a variant of the sphere model with random dynamics of the target. A scaling
law that describes the dependence of the distance from the target on the muta-
tion strength has been found and solved analytically for the optimal mutation
strength. It has then been shown that cumulative mutation strength adaptation
works perfectly in that the optimal mutation strength is realized by the algo-
rithm. Thus, our results do not support the observation made by Branke [7] that



in dynamic optimization, evolutionary algorithms lose the diversity necessary for
exploring the search space.

A goal of future research is the analysis of the performance of the (�=�; �)-ES
on a variant of the sphere model where the motion of the target is deterministic
and linear. Linear motion of the target can be expected to introduce correlations
in the sequence of steps to be taken and thus to lead to qualitatively new insights
in the performance of cumulative mutation strength adaptation.
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