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Abstract. Three algorithms are tested on the satellite range scheduling

problem, using data from the U.S. Air Force Satellite Control Network;

a simple heuristic, as well as local search methods, are compared against

a genetic algorithm on old benchmark problems as well as problems pro-

duced by a generator we recently developed. The simple heuristic works

well on the old benchmark, but fails to scale to larger, more complex

problems produced by our generator. The genetic algorithm yields the

best overall performance on larger, more diÆcult problems.

1 Problem Description

The U.S. Air Force Satellite Control Network (AFSCN) is responsible for coor-

dinating communications between users and satellites in space. A key mission of

the AFSCN is satellite range scheduling (SRS), which involves scheduling com-

munications between users on the ground and more than 100 satellites in space.

All communications are performed via nine ground stations located around the

globe, with an aggregate of sixteen antennas. The AFSCN scheduling center

typically receives over 500 user requests for a single day.

Each user request speci�es at a minimum an antenna at a particular ground

station, a required duration, and a time window within which the duration must

be allocated. Requests are classi�ed as either low or high-altitude, corresponding

to the orbit of the target satellite. The durations of low-altitude requests are

typically equal to the visibility windows, leaving little scheduling 
exibility. In

contrast, high-altitude satellites are visible to more ground stations for longer

periods of time. Consequently, high-altitude requests often specify alternative

antennas and/or visibility windows. The objective of the SRS problem is to

minimize the number of unsatis�ed requests.

The SRS problem is NP-complete:1 a reduction of the SRS problem to one

resource can be shown to be equivalent to a well known NP-complete problem in

the scheduling literature, denoted 1jrj j
P

Uj in the three-�eld notation widely

used by the scheduling community. The SRS problem is also over-subscribed in

the sense that all requests can rarely be scheduled; to satisfy all user requests,

1 We are currently working on a paper which presents an NP-completeness proof.



some form of arbitration process is required. Several algorithms for related over-

subscribed scheduling problems have been reported in the literature (e.g., see

[6] [11] [13]), but none directly address the peculiarities of the satellite range

scheduling problem, including alternative resources and/or time-windows.

Researchers at the Air Force Institute of Technology (AFIT) have developed

a number of algorithms for the SRS problem. Gooley and Schalck introduced

an algorithm based on a combination of mixed integer programming (MIP) and

insertion heuristics [4] [8], which scheduled between 91% and 95% of user re-

quests for small problem instances. Later, Parish used a genetic algorithm called

Genitor to solve the SRS problem [5]. Genitor out-performed the MIP approach,

nominally scheduling 96% of user requests.

Both the MIP algorithm and the Genitor genetic algorithm were evaluated

using the same set of seven real-world problem instances collected in 1992; we

refer to this collection of instances as the \AFIT benchmark". In 1992 approx-

imately 300 requests needed to be scheduled for a single day, compared to 500

requests per day in recent years. The need to schedule more requests has a clear

impact on problem diÆculty. In this paper we investigate whether the problems

in the AFIT benchmarks are representative of the kinds of Range Scheduling

problems that are solved in the present by AFSCN to determine whether the

old results should generalize.

Currently, there is no accepted state-of-the-art algorithm for satellite range

scheduling. Because it is an extremely important application, we have been en-

gaged in a study of various algorithms for this problem. In this paper, we replicate

the results reported by Parish [5] using Genitor to solve the AFIT benchmark

problems, and investigate reasons for Genitor's strong relative performance. We

identify a simple heuristic that can solve all of the problems in the AFIT bench-

mark. Finally, we generate new problems by modeling features currently en-

countered by AFSCN and explore conditions where the heuristic fails. Genitor

continues to display good results for new problems.

2 Algorithms for Satellite Range Scheduling

In this section, we document the various algorithms considered in this study. We

�rst discuss the method of encoding solutions, and the procedure for decoding

solutions into actual schedules. Next, we de�ne the three algorithms used in our

analysis: random sampling, local search under a shift neighborhood, and the

Genitor genetic algorithm. We then conclude by brie
y discussing our decision

to omit two well-known families of scheduling algorithms in our analysis.

2.1 Solution Representation and Decoding

Each of the algorithms we consider represents solutions as permutations of the

integers 1 throughN , whereN is the total number of requests to be scheduled. A

permutation represents the order in which requests are given access to particular



resources. A greedy heuristic is then used to generate a schedule from a permu-

tation, by attempting to schedule the requests in the order in which they appear

in the permutation. Each request is assigned to the �rst available resource (from

its list of alternatives), and at the earliest possible starting time. If the request

cannot be scheduled on any of the alternative resources, it is dropped from the

schedule (i.e., bumped). The \�tness" of a schedule is then de�ned as the total

number of requests bumped from the schedule.

2.2 Random Sampling

Random sampling produces schedules by generating random permutations of

length N . By randomly sampling a large number of schedules, we can character-

ize the distribution of solutions in the search space. Further, the performance of

random sampling provides a baseline measure of problem diÆculty.

2.3 Local Search under the Shift Neighborhood

A key component of any local search algorithm is the move operator. Because

problem-speci�c knowledge for the SRS problem is lacking, we selected the

\shift" move operator. The shift operator has been successfully applied to a

number of well-known scheduling problems, such as the permutation 
ow-shop

scheduling problem [10]. The neighborhood under the shift operator is de�ned

by considering all (N � 1)2 pairs (x; y) of positions in a current solution �, sub-

ject to the restriction that y 6= x � 1. The neighbor �
0

corresponding to the

position pair (x; y) is produced by shifting the job at position x into the po-

sition y, while leaving all other relative job orders unchanged. If x < y, then

�0 = (�(1); :::; �(x� 1); �(x+ 1); :::; �(y); �(x); �(y + 1); :::; �(n)). If x > y, then

�0 = (�(1); :::; �(y � 1); �(x); �(y); :::; �(x � 1); �(x+ 1); :::; �(n)).

Given the relatively large neighborhood size, we use the shift operator in

conjunction with next-descent search. The neighbors of the current solution

are examined in a random order, and the �rst neighbor with either a lower

or equal �tness (i.e., number of bumps) is accepted. Search terminates when a

pre-speci�ed number of evaluations is exceeded.

2.4 The Genitor Genetic Algorithm

Genitor [12] is a \steady-state" genetic algorithm [2]. Previous studies of the SRS

problem at AFIT [5] report good results when using Genitor in conjunction with

permutation encoding of solutions. In each step of Genitor, a pair of solutions

is selected and used to generate a single child, which then replaces the worst

solution in the current population.

In Genitor, the parent solutions are selected based on the rank of their �tness,

relative to other solutions in the population. A linear bias is used such that

individuals that are above the median �tness have a rank-�tness greater than

one and those below the median �tness have a rank-�tness of less than one.



The typical genetic algorithm encodes solutions as bit strings, enabling the

use of standard crossover operators such as one-point and two-point crossover

[3]. Because we encode solutions as permutations, a special crossover operator is

required to ensure that the recombination of two parent permutations results in

a child inheriting relevant characteristics of the two parents. We use Syswerda's

(relative) order crossover operator [9], which preserves the relative order of the

elements in the parents when constructing the child. Syswerda's operator has

been successfully applied in a variety of scheduling applications.

2.5 Other Scheduling Algorithms

We also considered straightforward implementations of Tabu search for the SRS

problem, but the performance of these algorithms was not competitive. With 500

requests, the number of neighbors under shift or swap-based move operators is

roughly 5002; consequently, Tabu search and other local search algorithms based

on steepest descent are simply not practical. We brie
y explored methods for

reducing the neighborhood size, but in all cases the reduction in neighborhood

size severely impacted algorithm performance.

Additionally, we developed constructive search algorithms based on texture-

based [1] and slack-based [7] constraint-based scheduling heuristics that select

the maximal subset of tasks that can be feasibly scheduled. We found that

texture-based heuristics are highly e�ective when the size of the problem is small

(e.g., less than 100 requests) and when alternative or backup requests are not

considered. However, on larger problems, the consideration of alternative times

makes the straightforward use of constraint-based methods ine�ective.

3 The AFIT benchmark

The AFIT benchmark problems 2 were derived using the ASTRO system, a com-

puter application developed to aid human schedulers. These problems represent

the user requests and visibilities for seven days, from October 12 to October 18,

1992. The low-altitude requests in these problems can be scheduled only at one

ground station (by assigning it to one of the antennas present at that ground

station). The number of requests to be scheduled for the seven problems are

322, 302, 300, 316, 305, 298, and 297 respectively. We note that since 1992, the

number of requests received during a typical day has increased substantially.

In our experimental setup we replicated the conditions and the reported re-

sults from Parish's study [5]. We ran Genitor on each of the seven problems in

the benchmark, using the same parameters: population size 200, selective pres-

sure 1:5, order-based crossover, and 8000 evaluations 3 for each run. We also ran

2 We thank Dr. James T. Moore, Associate Professor of Operations Research at the

Department of Operational Sciences, Graduate School of Engineering and Manage-

ment, Air Force Institute of Technology for providing the data.
3 An increase in the number of evaluations to 50k and of the population size to 400

did not improve the best solutions found for each problem.



Table 1. Performance of Genitor, local search, and random sampling on the AFIT

benchmark problems, in terms of the best and mean number of bumped requests. All

statistics are taken over 30 independent runs. The last column reports the performance

of Schalck's Mixed-Integer Programming algorithm [8].

Genitor Local Search Random Sampling MIP

Day Min Mean Stdev Min Mean Stdev Min Mean Stdev

1 8 8.6 0.49 15 18.16 2.54 21 22.7 0.87 10

2 4 4 0 6 10.96 2.04 11 13.83 1.08 6

3 3 3.03 0.18 11 15.4 2.73 16 17.76 0.77 7

4 2 2.06 0.25 12 17.43 2.76 16 20.20 1.29 7

5 4 4.1 0.3 12 16.16 1.78 15 17.86 1.16 6

6 6 6.03 0.18 15 18.16 2.05 19 20.73 0.94 7

7 6 6 0 10 14.1 2.53 16 16.96 0.66 6

random sampling and local search on each AFIT problem, with a limit of 8000

evaluations per run. For each algorithm, we performed a total of 30 independent

runs on each problem. The results are summarized in Table 1. Included in the

table are the results obtained by Schalck using Mixed Integer Programming [8].

As previously reported, Genitor yields the best overall performance.

To exploit the di�erences in scheduling slack and number of alternatives

between low and high-altitude requests, we designed a simple greedy heuristic

(which we call the \split heuristic") that �rst schedules all the low-altitude re-

quests (in the order given by the permutation), followed by the high-altitude

requests. We show that: (1) for more than 80% of the best known schedules

found by Genitor, the split heuristic does not increase the number of con
icts

in the schedule, and (2) the split heuristic typically produces good (and often

best-known) schedules.

We hypothesized that Genitor may be learning to schedule the low-altitude

requests before the high-altitude requests, leading to the strong overall per-

formance. If true, the evaluation of high-quality schedules should, on average,

remain unchanged when the split heuristic is applied. To test this hypothesis, we

ran 1000 trials of Genitor on each AFIT problem. The results are summarized

in Table 2. The second column (labeled \Total Number of Best Known Found")

records the number of schedules (out of 1000) with an evaluation equal to the

best found by Genitor in any run. We then applied the split heuristic to each

such schedule. The schedules resulting from the split heuristic fall into three cat-

egories. First, the con
icts are identical to those found by Genitor; the number of

schedules in this category is given in the third column (\Same Evaluation Same

Con
icts"). Second, the evaluation is the same but the con
icts are di�erent;

the number of schedules in this category is given in column \Same Evaluation

Di�erent Con
icts". Third, the evaluation is di�erent; the last column reports

the number of schedules in this category. By separating the requests from the

schedules produced by Genitor into low and high-altitude requests, the evalu-

ation of more than 80% of the schedules remains unchanged. The numbers in



Table 2. The e�ect of applying the split heuristic when evaluating best known sched-

ules produced by Genitor

Day Total Number of Same Evaluation Same Evaluation Worse

Best Known Found Same Con
icts Di�erent Con
icts Evaluation

1 420 38 373 9

2 1000 726 106 168

3 996 825 115 56

4 937 733 50 154

5 862 800 12 50

6 967 843 56 68

7 1000 588 408 4
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Fig. 1. Algorithm performance for the seven AFIT benchmark problems

the last column of the table also warn that when using the split heuristic only

a subspace of the permutations is considered (the permutations that are sep-

arated into low and high-altitude requests); this subspace does not contain all

the best-known solutions, and, in fact, for di�erent instances of the problem this

subspace could be suboptimal.

Our second hypothesis is that using the split heuristic results in solutions

with a small number of con
icts. Figure 1 presents a summary of the results

obtained when using the Genitor, Local Search and Random Sampling without

the split heuristic (30 experiments, 8000 evaluations per experiment), as well as

the split versions denoted by Genitor-S, Local Search-S and Random Sampling-

S. The split versions of the three algorithms were run in 30 experiments with 100

evaluations per experiment. The minimum number of bumps in 30 experiments

is recorded for each problem as the percent of requests scheduled. The left half

of Figure 1 presents the average percentage of requests scheduled for the seven

problems by each algorithm. The corresponding average CPU times (in seconds)

appear in the right half of the �gure.



Table 3. Results of running random sampling in 30 experiments, by generating 100

random permutations per experiment. A problem-speci�c heuristic is used in the eval-

uation function, where the low-altitude requests are evaluated �rst.

Best Random Sampling-S

Day Known Min Mean Stdev

1 8 8 8.2 0.41

2 4 4 4 0

3 3 3 3.3 0.46

4 2 2 2.43 0.51

5 4 4 4.66 0.48

6 6 6 6.5 0.51

7 6 6 6 0

0 4 128

R1

R2

R3

R4

Ground Station 1
0 4 128

R3

R4

Ground Station 2

R8

R5 R6 R7

Fig. 2. Problem for which the split heuristic can not result in an optimal solution.

Each ground station has two antennas; the only high-altitude requests are R3 and R4.

For all the problems, Random Sampling-S �nds the best known solutions, as

illustrated in Table 3. Since the best known solutions were obtained by randomly

sampling a small number of permutations, solving the problems in the AFIT

benchmark is easy using the split heuristic.

However, we can build a simple problem instance for which the optimal solu-

tion cannot be found using the split heuristic. Consider the problem represented

in Figure 2. There are only two ground stations, and each ground station has

two antennas (meaning that at each ground station at most two requests can be

scheduled at the same time). There are two high-altitude requests, R3 and R4,

with durations 3 and 7 respectively. R3 can be scheduled between start time 4

and end time 13; R4 can be scheduled between 0 and 9. Both R3 and R4 can

be scheduled at either of the two ground stations. The rest of the requests are

low-altitude requests. R1 and R2 request the �rst ground station, while R5, R6,

R7, and R8 request the second ground station. This problem �ts the description

of the SRS problems in the AFIT benchmark: the low-altitude requests can be

scheduled only at a speci�c ground station, with a �xed start and end time,

while the high-altitude requests have alternative resources and a time window



speci�ed. For all the permutation schedules, if the split heuristic is used, R3 and

R4 cannot be scheduled. However, it is possible to �nd schedules where both R3

and R4 get scheduled, and only one request (R1, R2, or R8) gets bumped. The

subspace containing the permutations with all the low-altitude requests before

the high-altitude requests is suboptimal - the global optimum is not necessar-

ily contained in this subspace. The example shows the potential for failure to

generate optimal solutions using the split heuristic.

4 Generalizing the AFIT problems

Does the algorithm performance obtained for the AFIT benchmark transfer to

larger sets of similar problems? To explore this question, we built a problem

generator which produces problems similar to the AFIT benchmark but also

including features encountered in the present-day real-world problems. Then we

compare the results of running Genitor, local search and random sampling on

problems produced by the problem generator to the results reported for the

AFIT problems. We show that: (1) Genitor consistently results in the smallest

number of unscheduled requests, and (2) the performance of the split heuristic

on the seven AFIT problems does not transfer to the problems produced by our

generator.

Two main features characterize our problem generator. First, it models di�er-

ent types of requests encountered in the real-world satellite scheduling problem,

such as downloading data from a satellite, transmitting information or com-

mands from a ground station to a satellite, checking the health and status of a

satellite. Second, the problem generator uses models for customer behavior. The

generator produces a prede�ned number of requests for each customer and each

request type. With a 0:5 probability we determine if a request is a low-altitude or

high-altitude one. For low-altitude requests, we decided to preserve the AFIT def-

inition by assigning the duration equal to the size of the time window. However,

we de�ne alternative ground stations for both low and high-altitude requests.

To generate alternatives for a request, we collected data on the Web about the

visibilities of various satellites 4 from the locations of the nine ground stations.

We repeat the experiments described for the AFIT problems by running Gen-

itor, local search and random sampling for problems produced by our generator.

To compare our results to the ones reported for the AFIT problems, but also to

generate realistic problems, we ran the experiments for problem sizes 300, 350,

400, 450, and 500. For each size, we generated 30 problem instances.

We again ran Genitor, local search and random sampling, with and without

the split heuristic, performing 30 runs with 8000 evaluations per run for each

problem. An increase in the number of evaluations to 50k and of the population

size to 400 did not improve the best solutions found for each problem. We record

the number of unscheduled requests for each run. Figure 3 shows that Genitor

on average outperforms Genitor-S and both versions of local search and random

4 See: http://earthobservatory.nasa.gov/MissionControl/overpass.html for visibilities;

thanks to Ester Gubbrud for helping us to compile the databases.



Table 4. The di�erence between the minimum number of bumps reported by an algo-

rithm and the minimum number of bumps found by any of the six algorithms (with or

without the split heuristic) is averaged over the 30 instances for each problem size

Genitor Local Search Random Sampling

Size Mean Stdev Mean Stdev Mean Stdev

300 0.000 0.000 0.000 0.000 0.167 0.213

350 0.000 0.000 0.333 0.368 1.067 1.099

400 0.000 0.000 1.233 1.702 2.833 3.523

450 0.000 0.000 3.667 3.678 5.967 6.240

500 0.000 0.000 8.300 3.941 11.767 7.840

Genitor-S Local Search-S Random Sampling-S

Size Mean Stdev Mean Stdev Mean Stdev

300 0.767 0.737 0.767 0.737 0.867 0.671

350 0.667 0.851 0.967 1.551 1.367 2.033

400 1.100 1.128 2.167 2.626 2.933 3.168

450 1.467 1.223 3.967 4.309 5.200 6.717

500 2.200 2.097 8.700 8.907 10.667 10.161

sampling. In fact Genitor (without the split heuristic) always outperforms all the

other algorithms. In Table 4 we �rst subtract the minimum number of bumped

requests for each problem from the minimum number of bumped requests re-

ported by each of the algorithms (with or without the split heuristic) for that

problem in 30 runs. Then we average these di�erences over the 30 instances gen-

erated for each size. From both Figure 3 and Table 4, it is clear that the split

heuristic always results in an average decrease in performance.

5 Conclusions

Satellite Range Scheduling is an important real world problem that impacts

the use of expensive and limited resources. We �rst considered a version of the

problem studied at AFIT. For planning and experimental control purposes, we

also built a problem generator that introduces new realistic features, currently

encountered by the AFSCN. We show that the seven problems in the AFIT

benchmark are trivial to solve when a simple heuristic is used. But, when applied

to more realistic problems, the split heuristic results in poor-quality solutions.

Finally, our results indicate that a genetic algorithm, Genitor, using a permuta-

tion representation yields the best overall performance and does so in a modest

amount of time. The results also reinforce the notion that benchmarks need to

be constructed or chosen to be representative for actual target applications.
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