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Abstract. A hyperheuristic is a high-level heuristic which adaptively
chooses between several low-level knowledge-poor heuristics so that while
using only cheap, easy-to-implement low-level heuristics, we may achieve
solution quality approaching that of an expensive knowledge-rich ap-
proach, in a reasonable amount of CPU time. For certain classes of prob-
lems, this generic method has been shown to yield high-quality prac-
tical solutions in a much shorter development time than that of other
approaches such as tabu search and genetic algorithms, and using rel-
atively little domain-knowledge. Hyperheuristics have previously been
successfully applied by the authors to two real-world problems of per-
sonnel scheduling. In this paper, a hyperheuristic approach is used to
solve 52 instances of an NP-hard nurse scheduling problem occuring at a
major UK hospital. Compared with tabu-search and genetic algorithms,
which have previously been used to solve the same problem, the hyper-
heuristic proves to be as robust as the former and more reliable than
the latter in terms of solution feasibility. The hyperheuristic also com-
pares favourably with both methods in terms of ease-of-implementation
of both the approach and the low-level heuristics used.

Keywords: Hyperheuristic, Heuristic, Personnel Scheduling, Nurse
Scheduling.

1 Introduction

Personnel scheduling deals with the allocation of timeslots and possibly locations
and other resources to people. This problem has been extensively addressed in
the literature over the past 30 years with a survey in almost every decade [3,11,4].
Very often the problem is solved using heuristics. For instance Schaerf [10] tack-
led a high school timetabling problem formulated as a mathematical programme.
He defined two types of neighbourhood moves, the atomic move which swaps two
classes of the same lecturer which are scheduled in two different timeslots, and
� Corresponding author

J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 851–860, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



852 Peter Cowling, Graham Kendall, and Eric Soubeiga

the double move as a pair of atomic moves. The former is associated with a
tabu search and the latter with a randomised nonascendent search (RNA). Both
methods are then used alternately. The algorithm produced timetables better
than the manual ones for various types of schools. Levine [9] used a hybrid
genetic algorithm (GA) to solve an airline crew scheduling problem. The GA
was hybridised with a local search heuristic which tries to repair infeasibili-
ties in the solution. Computational experiments compared the hybrid GA with
branch-and-cut and branch-and-bound algorithms. Both these latter algorithms
produced better solutions than the hybrid GA. Often heuristic methods used
to solve personnel scheduling problems make use of sophisticated metaheuristic
techniques and problem-specific information to arrive at a good solution. This
is the case in [8] and [2] which respectively report the use of tabu search and a
genetic algorithm for nurse scheduling.

It is precisely in this context that we proposed a hyperheuristic approach [5]
as a heuristic that operates at a higher level of abstraction than current meta-
heuristic approaches. A hyperheuristic controls a set of simple, knowledge-poor,
low-level heuristics (for example change, swap, add and drop moves). At each
decision point the hyperheuristic must choose which low-level heuristic to apply,
without recourse to domain knowledge. Hence we may use hyperheuristics in
cases where little domain-knowledge is available (e.g. when dealing with a new,
poorly understood or unusual problem) or when a solution must be produced
quickly (e.g for prototyping). A hyperheuristic could be regarded as an ‘off-the-
peg’ method as opposed to a ‘made-to-measure’ bespoke metaheuristic. It is a
generic and fast method, which should produce solutions of at least acceptable
quality, based on a set of cheap and easy-to-implement low-level heuristics. In
order to apply a hyperheuristic to a given problem, we need only a set of low-level
heuristics and one or more measures for evaluating solution quality. In [5,6] and
[7] respectively a choice function hyperheuristic of the same type as in section 4
was successfully applied to a real world problem of scheduling business meetings,
and to a problem of scheduling undergraduate students’ project presentations at
a UK academic institution. In this paper, we use our hyperheuristic technique
to solve another real-world problem, that of scheduling nurses at a major UK
hospital. The problem has been previously solved using tabu search [8] and ge-
netic algorithms [2]. It is our aim to demonstrate that hyperheuristics are not
only readily applicable to a wide range of scheduling and other combinatorial
optimisation problems, but also can provide very good-quality solutions com-
parable to those of knowledge-rich sophisticated metaheuristics, while using less
development time and simple, easy-to-implement low-level heuristics. In sections
2, 3, 4 and 5 we present respectively the nurse scheduling problem, the solution
methods used, experimental results, and conclusions.

2 The Nurse Scheduling Problem

The problem is to create weekly schedules for wards containing up to 30 nurses
at a major UK hospital. These schedules must respect working contracts and
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meet the demands (i.e number of nurses of different grades required) for each
day-shift and night-shift of the week, whilst being perceived as fair by the nurses
themselves. Nurses work either day-shifts, divided into ‘earlies’ and ‘lates’, or
night-shifts in a given week. A full week’s work typically includes more days than
nights1. As mentioned in [8], the problem can be decomposed into 3 independent
stages. Stage 1 uses a knapsack model to check if there are enough nurses to meet
demands. Additional nurses are needed for Stage 2 otherwise. This latter stage
is the most difficult and is concerned with the actual allocation of the weekly
shift-pattern schedules to each nurse. Then stage 3 uses a network flow model
to assign those on day-shifts to ‘earlies’ and ‘lates’. As in [8] and [2] we limit
ourselves to the highly constrained problem in stage 2, as stages 1 and 3 can
be solved quickly using standard knapsack and network flow algorithms. The
stage 2 problem is described as follows. Each possible weekly shift-pattern for a
given nurse can be represented as a 0-1 vector of 14 elements (7 day-shifts and 7
night-shifts). A ‘1’/‘0’ in the vector represents a day or night ‘on’/‘off’. For each
nurse there is a limited number of shift-patterns corresponding to the number
of combinations of the number of days s/he is contracted to work in a week2.
There are typically between 20 and 30 nurses per ward, 3 grade-bands, and 411
different (F/T and P/T) shift-patterns. Based upon the nurses’ preferences, the
recent history of patterns worked, and the overall attractiveness of the pattern,
a penalty cost is associated to each assignment nurse-shift pattern, values of
which were set after agreement with the hospital, ranging from 0 (ideal) to 100
(undesirable) -See [8] for further details. Our decision variables are denoted by
xij assuming 1 if nurse i works shift-pattern j and 0 otherwise. Let parameters
g, n, s be the number of grades, nurses and possible shift-patterns respectively.
ajk is 1 if shift-pattern j covers shift k, 0 otherwise. bir is 1 if nurse i is of grade
r or higher, 0 otherwise. pij = penalty cost of nurse i working shift-pattern j;
Skr = demand of nurses of grade r or above on day/night (i.e shift) k; and F (i)
= set of feasible shift-patterns for nurse i. We may then formulate the problem
as follows:

Min PC =
n∑

i=1

s∑
j=1

pijxij (1)

s.t. ∑
j∈F(i)

xij = 1, ∀i (2)

s∑
j=1

n∑
i=1

birajkxij ≥ Skr,∀k, r (3)

xij ∈ {0, 1},∀i, j (4)
1 e.g. a full-time nurse works 5 days or 4 nights, whereas a part-time nurse works 4

days or 3 nights, 3 days or 3 nights, and 3 days or 2 nights.
2 For example a F/T nurse contracted to work either 5 days or 4 nights has a total of

C5
7 = 21 feasible day shift-patterns and C4

7 = 35 feasible night shift-patterns.
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Equations (1), (2) and (3) express respectively the objective of minimising
the overall penalty cost associated with the nurses’ desirability for the shift-
patterns, the constraint that each nurse should work exactly one shift-pattern,
and the demand constraints. It should be noted that bir is defined in such a
way that higher-grade nurses can substitute for those at lower grades if needed.
The problem is NP-hard [2] and instances typically involve between 1000 and
2000 variables and up to 70 constraints. As noted in [2], the difficulty of a given
instance depends upon the shape of the solution space, which in turn depends
on the distribution of the penalty cost (pij) and their relationship with the set
of feasible solutions. In this paper we consider 52 data instances, based on three
wards and corresponding to each week of the year. These 52 instances, as a
whole, feature a wide variety of solution landscapes ranging from easy problems
with many low-cost global optima scattered througout the solution space, to very
hard ones with few global optima and in some cases with relatively sparse feasible
solutions [2]. Optimal solutions are known for each instance as the problem was
solved using a standard IP package. However some instances remained unsolved
after 15 hours of (Pentium II 200 Mhz PC) run-time. Further experiments with
a number of descent methods using different neighbourhoods, and a standard
simulated annealing were conducted unsuccessfully, failing to obtain feasibility
[2]. The most successful approach which works within the low CPU time available
so far is a tabu search which uses chain-moves whose design and implementation
were highly problem and instance specific as these moves relied on the way the
different factors affecting the quality of a schedule were combined in the pij

as noted in [2]. In [2] a GA which did not make use of chain-moves was also
used to solve the problem. Failure to obtain good solutions led to the use of a
co-evolutionary strategy which decomposed the main population into several co-
operative sub-populations. Problem structure was incorporated in both the way
the sub-populations were built, and the way partial solutions were recombined to
form complete ones. As a result, the applicability of the co-evolutionary strategy
is, likewise, limited to problems with a similar structure.

Here we propose to solve the nurse scheduling problem using a high-level hy-
perheuristic approach which has been successfully applied to two rather different
real-world problems of personnel scheduling. The evaluation function3 used by
the hyperheuristic distinguishes between ‘balanced’ and ‘unbalanced’ solutions
[8,2]. Effectively, since nurses work either days or nights it appears that in order
for a given solution to be feasible, (i.e enough nurses covering all 14 shifts at
each grade) the solution must have sufficient nurses in both days and nights sep-
arately. Formally, a solution is balanced in days (or nights) at a given grade r if
there are both under-covered and over-covered shifts in the set of days (or nights)
at grade r such that the nurse surplus in the over-covered day (or night) shifts
suffices to compensate for the nurse shortage of the under-covered day (or night)
shifts. In fact, a solution cannot be made feasible until it is balanced [8,2]. We de-
fine Infeas =

∑g
r=1(ρ×Balr+1)

∑14
k=1 max

([
Skr − ∑n

i=1
∑s

j=1 birajkxij

]
, 0

)
,

3 known as fitness function in the GA literature
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where Balr is 2 if both day and night are unbalanced at grade r, 1 if ei-
ther day or night is unbalanced at grade r, and 0 otherwise; ρ is a param-
eter set to 5, so that a balanced solution with more nurse-shortages is pre-
ferred to an unbalanced one with fewer nurse-shortages, as the latter is more
difficult to make feasible than the former. Based on this, we define the eval-
uation function E = PC + CdemandInFeas with Cdemand a weight associ-
ated to InFeas as in [2]. The definition of Cdemand is based on the num-
ber, q, of nurse-shortages in the best least-infeasible solution so far, i.e. q =∑14

k=1
∑g

r=1 max
([

Skr − ∑n
i=1

∑s
j=1 birajkxij

]
, 0

)
. Coefficient Cdemand of

InFeas in E is then given by Cdemand = γ × q if q > 0, and Cdemand = v
otherwise; where γ is a preset severity parameter, and v is a suitably small
value. The idea is that the weight Cdemand depends on the degree of infeasibility
in the best least-infeasible solution encountered so far, after which it remains at
v. We use γ = 8 and v = 5 as given in [2]4. It is interesting to note that while in
[8] unbalanced solutions are repaired, in [2] they are instead avoided through the
use of incentives/disincentives to reward/penalise balanced/unbalanced individ-
uals in the population. Here we opt for the former approach and use the same
‘balance-restoring’ low-level heuristic used in tabu search of [8]. As described in
section 4, this low-level heuristic uses a ‘change’ and a ‘swap’ type of move. We
next describe our hyperheuristic method.

3 A Choice-Function Hyperheuristic Technique

Our hyperheuristic is based upon a Choice-Function which adaptively ranks
the low-level heuristics. Originally [5], the choice function is determined based
on information with regards to individual performance of each low-level heuris-
tic (f1), joint performance of pairs of heuristics (f2), and the amount of time
elapsed since the low-level heuristic was last called (f3). Thus we have f1(Nj) =∑

n αn−1( In(Nj)
Tn(Nj)

) and f2(Nj , Nk) =
∑

n βn−1( In(Nj ,Nk)
Tn(Nj ,Nk) ) where In(Nj)/

In(Nj , Nk) (respectively Tn(Nj)/Tn(Nj , Nk)) is the change in the objective func-
tion (respectively the number of CPU seconds) the nth last time heuristic Nj

was called/called immediately after heuristic Nk. Both α and β are parameters
between 0 and 1, reflecting the greater importance attached to recent perfor-
mance. f1 and f2 aim at intensifying the search. The idea behind the expressions
of f1 and f2 is analogous to the exponential smoothing forecast of their perfor-
mance [12]. f3 provides an element of diversification, by favouring those low-level
heuristics that have not been called recently. Then we have f3(Nj) = τ(Nj)
where τ(Nj) is the number of CPU seconds which have elapsed since low-level
heuristic Nj was last called. If the low-level heuristic just called is Nj then for
any low-level heuristic Nk, the choice function f of Nk is defined as f(Nk) =
αf1(Nk)+βf2(Nj , Nk)+δf3(Nk). In this expression, the choice function attempts
to predict the overall performance of each low-level heuristic. In [6], we presented
a different choice function which separately predicts the performance of each low-
4 See [2] for an interesting discussion on the choice of evaluation functions.
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level heuristic with respect to each criterion of the evaluation function instead
(PC and Infeas in the model above). The choice function f is then decomposed
into f(Nk) =

∑
l∈L fl(Nk) =

∑
l∈L

[
αlf1l(Nk) + βlf2l(Nj , Nk) + δ

|L|f3(Nk)
]

where L = {PC, Infeas} is the set of the evaluation function criteria, and
f1l(Nk) (respectively f2l(Nj , Nk)) is obtained by replacing In(Nk) (respectively
In(Nj , Nk)) with Iln(Nk) (respectively Iln(Nj , Nk)) in the expression of f1(Nj)
(respectively f2(Nj , Nk)) above. Iln(Nk) (respectively Iln(Nj , Nk)) is the first
(respectively second) order improvement with respect to criterion l ∈ L. Param-
eter values for α, β and δ are changed adaptively using the procedure in [6]. We
will give results for the second approach which works as follows

Do
Choose a search criterion l
- Select the low-level heuristic that maximises fl and apply it.
- Update choice function fl’s parameters using the adaptive procedure

Until Stopping condition is met.

The probability of choice of criteria PC and InFeas is given by p1 =
1

1+Cdemand
and p2 = Cdemand

1+Cdemand
respectively as defined in [6]. We would like to

emphasize the fact that the implementation of the hyperheuristic technique was
quite fast. In effect the hyperheuristic presented here is a ‘standard’ approach
which was successfully applied to two different real-world problems [5,6,7]. The
hyperheuristic approach only requires a set of low-level heuristics to be added
to the hyperheuristic black box, and a formal means of evaluating solution qual-
ity. The way the hyperheuristic works is independent of both the nature of the
low-level heuristics and the problem at hand. Hence important savings in de-
velopment time are made possible by the use of the hyperheuristic framework.
Development of the framework itself took over eighteen months. For example
in [7] high-quality solutions were initially developed in just over two weeks af-
ter meeting with the problem owner. Solution development time for the current
problem was one-and-a-half months, due to the larger number of instances to be
handled and the development of low-level heuristics for this challenging highly-
constrained real-world problem. We show in the next section that, despite such a
relatively short development time, the hyperheuristic - even when dealing with a
very difficult problem - is capable of finding solutions of good quality comparable
to those of bespoke metaheuristics within a reasonable amount of time.

4 Experiments

Both our hyperheuristic and its low-level heuristics were coded in Micosoft Visual
C++ version 6 and all experiments were run on a PC Pentium III 1000MHz
with 128MB RAM running under Microsoft Windows 2000 version 5. In order
to compare our results with those of tabu search (TS) and genetic algorithms
(GA), our hyperheuristic starts with a solution generated randomly by assigning
a random feasible shift-pattern to each nurse as in [8]. All results were averaged
over 20 runs. The TS algorithm of [8] used the following 11 low-level heuristics:
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[h1] Change the shift-pattern of a random nurse; [h2] Same as [h1] but 1st
improving InFeas; [h3] Same as [h1] but 1st improving InFeas, no worsening of
PC; [h4] Same as [h1] but 1st improving PC; [h5] Same as [h1] but 1st improving
PC, no worsening of InFeas; [h6] Change the shift-pattern type (i.e day/night)
of a random nurse, if solution unbalanced; [h7] Same as [h6] but aim is to restore
balance5; [h8] (shift-chain1): This heuristic considers chains of moves aiming at
decreasing both the nurse-shortage in one (under-covered) shift and the nurse-
surplus in one (over-covered shift), and leaving the remaining shift unchanged;
[h9] (nurse-chain1): Considers chains of moves which move the first nurse in
the chain to cover an under-covered shift and move the subsequent nurses to the
shift-pattern just vacated by their predecessor in the chain.6; [h10] (shift-chain2):
Considers a shift-chain of moves aiming at decreasing the penalty cost when the
solution is already feasible; [h11] (nurse-chain2): Considers nurse-chains of moves
aiming at decreasing the penalty cost when the solution is already feasible7.

Instead, our hyperheuristic uses 9 low-level heuristics including the first 7 low-
level heuristics above and the following: [H8] (Change-and-keep1): This heuristic
changes the shift-pattern of a nurse and assigns the removed shift-pattern to
another nurse (1st improving PC); [H9] (Change-and-keep2): Same as [H8], but
1st improving PC and no worsening of InFeas.

The chain-moves are highly effective moves which were responsible for both
feasibility (using shift-chain1 and nurse-chain1) and optimality (using shift-
chain2 and nurse-chain2) of the solution in most cases (see [8] for further details).
TS can only yield good solutions when equipped with such moves [1,2]. However,
as noted in [1,2] these moves are highly problem-dependent and, in fact, instance-
type dependent. Unlike in TS, the low-level heuristics used by the hyperheuristic
are fewer and much simpler than the chain-moves. They are all based around
changing, or swapping one or two shift-patterns, thus reflecting what users usu-
ally do in practice [5]. In Table 1, we present the results of our hyperheuristic,
along with those of both the direct and indirect GA [1,2] as well as TS [8] and
the IP optimal solution [1] for each of the 52 weeks (problem instances) of the
year. The stopping condition of the hyperheuristic is 6000 iterations, which cor-
responds to a CPU time between 44 and 60 seconds on a Pentium II 1000Mhz8.
We see that for all instances the hyperheuristic is able to find feasible solutions
in each of 20 runs. It appears that the hyperheuristic is more reliable than both
the direct and the indirect GA in terms of producing practical solutions for the
hospital. To confirm the reliability of the hyperheuristic, we ran it on instance
50 (which is a difficult instance for both GA’s and appeared to be the most dif-
ficult for the hyperheuristic) 100 times and feasibility was again achieved always
5 i.e from day to night if night is unbalanced and vice-versa. If both days and nights

are unbalanced a swap of shift-pattern type for a pair of nurses, one working days
and the other working night is considered. The nurse working day is assigned a night
shift-pattern and the nurse working night is assigned a day shift-pattern.

6 Both [h8] and [h9] chain-moves are defined as paths in a graph. The move is only
attempted if the solution is already balanced but not yet feasible.

7 This time both [h10] and [h11] chains are represented as cycles in a graph.
8 The TS stopping condition was 1000 moves without overall improvement.



858 Peter Cowling, Graham Kendall, and Eric Soubeiga

Table 1. Hyperheuristic and metaheuristic performances on the nurse scheduling prob-
lem. Results are averaged over 20 runs. Format is proportion of feasible solutions in 20
runs/average penalty cost.

Instances Hyperheuristic Direct GA Indirect GA Tabu seach IP cost
Week 1 1/8 1/0 1/0 0 0
Week 2 1/52.8 1/12 1/12 11 11
Week 3 1/50 1/18 1/18 18 18
Week 4 1/17 1/0 1/0 0 0
Week 5 1/11 1/0 1/0 0 0
Week 6 1/ 2 1/1 1/1 1 1
Week 7 1/13.55 0.5/13 1/11 11 11
Week 8 1/14.95 1/11 1/11 11 11
Week 9 1/3.6 0.95/3 1/3 3 3
Week 10 1/5.05 1/1 1/2 1 1
Week 11 1/2 1/1 1/1 1 1
Week 12 1/2 1/0 1/0 0 0
Week 13 1/2 1/1 1/1 1 1
Week 14 1/3.15 1/3 1/3 3 3
Week 15 1/3.05 1/0 1/0 0 0
Week 16 1/40.1 0.95/25 1/25 24 24
Week 17 1/17.6 1/4 1/4 4 4
Week 18 1/20.85 1/7 1/6 7 6
Week 19 1/1.6 1/1 1/1 1 1
Week 20 1/15.45 0.95/5 1/4 4 4
Week 21 1/0 1/0 1/0 0 0
Week 22 1/25.5 1/1 1/1 1 1
Week 23 1/0 0.95/0 1/0 0 0
Week 24 1/1 0.75/1 1/1 1 1
Week 25 1/0.4 1/0 1/0 0 0
Week 26 1/48 0.1/0 1/0 0 0
Week 27 1/3.65 1/2 1/3 2 2
Week 28 1/65.8 1/1 0.95/1 1 1
Week 29 1/15 0.35/3 1/1 2 1
Week 30 1/39.4 1/33 1/33 33 33
Week 31 1/66.9 0.8/66 1/36 33 33
Week 32 1/41.6 1/21 1/21 20 20
Week 33 1/10.6 1/12 1/10 10 10
Week 34 1/42.9 1/17 1/16 15 15
Week 35 1/38.8 1/9 1/11 9 9
Week 36 1/34.85 1/7 1/6 6 6
Week 37 1/8.05 1/3 1/3 3 3
Week 38 1/13.3 1/3 1/0 0 0
Week 39 1/5.1 1/1 1/1 1 1
Week 40 1/9.35 1/5 1/ 4 4 4
Week 41 1/61.3 0.95/27 1/27 27 27
Week 42 1/47.55 1/5 1/8 5 5
Week 43 1/27.35 0.9/8 1/6 6 6
Week 44 1/31.75 0.9/45 1/17 16 16
Week 45 1/5.35 1/0 1/0 0 0
Week 46 1/9.4 0.7/6 1/4 3 3
Week 47 1/3.3 1/3 1/3 3 3
Week 48 1/6.05 1/4 1/4 4 4
Week 49 1/30.4 1/26 0.7/25 24 24
Week 50 1/109.25 0.35/38 0.8/36 35 35
Week 51 1/74.3 0.45/46 1/45 45 45
Week 52 1/62.2 0.75/63 1/46 46 46
Average 1/23.5 0.91/10.8 0.99/9.0 1/8.8 8.7
Run time < 60 sec 15 sec 10 sec 30 sec up to hours
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within 6000 iterations (less than a minute of CPU time). From this point of view,
the hyperheuristic appears to be as robust as TS which, too, always found fea-
sible solutions. The hyperheuristic however has the highest average cost of 23.5,
though more than 50% of the instances (27 instances) were solved to within
10% of the optimal solution, including 3 instances (weeks 21, 23 and 24) where
optimality is reached on each of 20 runs. Also in 9 instances (Weeks 7, 9, 14, 19,
25, 27, 33, 47 and 48) the optimal solution is hit up to 19 times out of 20 runs,
corresponding to a probability of optimality of 0.95. This shows that optimal
solutions are indeed, within the reach of the hyperheuristic in spite of its sim-
plicity and that of its low-level heuristics, when compared with the problem and
instance-specific information used by the TS (chain-moves) and GA (population
decomposition and recombination using problem structure) implementations. In
terms of cost, we noted that the hyperheuristic performed well for instances with
slack demand-constraints and poorly for those with tight constraints (e.g Weeks
26, 28, 42, 50).

Observations of the frequency of call of the low-level heuristics showed that
[h2] is called most often (e.g 37% on average for Week 49), followed by [h6] (e.g
10% on Week 49) and all other heuristics are called between 5% and 9%. It ap-
pears that each low-level heuristic has a part to play in the search. Observations
of Infeas and PC showed that immediately upon finding a feasible solution (i.e
InFeas = 0) there was a sudden increase in PC. Similar observations mere made
in [8]. Regarding choice-function parameters, the hyperheuristic search used a
very high δ and a low α and β, thus confirming the need to diversify the search
quite frequently, due to the sparse spread of good solutions in the landscape [2].
This was in total agreement with the graph of the variation of InFeas overtime
which featured sudden low peaks of Infeas = 0, similar to the ‘comb’ shape
graph of the same function in [8]. Typically values of InFeas = 0 never lasted
more than 41 heuristic calls (compared to a total of 10000 heuristic calls overall)
after they were obtained. Values for αInFeas and βInFeas were relatively higher
than those of αPC and βPC clearly showing the greater importance attached to
feasibility over lowering PC.

5 Conclusions

We have applied a hyperheuristic to an NP-hard highly-constrained problem of
scheduling nurses at a major UK hospital. The problem had previously been
solved using tabu search and two genetic algorithms. In terms of solution feasi-
bility, our hyperheuristic proved more reliable than both the direct and indirect
genetic algorithms and proved to be as robust as tabu search. In terms of cost,
over half of the instances were solved within 10% of optimality. In a few instances
the hyperheuristic obtained optimal solutions with probability of up to 1, thus
proving that optimality is indeed within the reach of the hyperheuristic, in spite
of its simplicity and that of its low-level heuristics when compared to the highly
problem-specific information used by both TS and the GA’s. Because of their
problem-specific considerations, both TS and GA implementations for this prob-
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lem are limited in their applicability to other problems as opposed to the hyper-
heuristic which has been successfully applied to two other personnel-scheduling
problems [5,6,7]. Moreover, the hyperheuristic does not need any parameter tun-
ing. Hyperheuristics are easy-to-implement and require less domain knowledge
than most other heuristic approaches, yet still are able to arrive at good-quality
solutions even for very difficult problems within a reasonable amount of CPU
and implementation time. It appears that hyperheuristics can be robust and re-
liable for solving real-world problems of scheduling and optimisation. Ongoing
research will investigate other types of hyperheuristics applied to a wider range
of real-world problems.
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