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Abstract. We use a weighted count of the number of nodes and relations
in a conceptual network as a measure for knowledge. We study how a
limited knowledge of the prerequisite concepts affects the knowledge of
a discipline. We find that the practical knowledge and expert knowledge
scale with the knowledge of prerequisite concepts, and increase hyper-
exponentially with the knowledge of the discipline specific concepts. We
investigate the maximum achievable level of abstraction as a function
of the material covered in a text. We discuss possible applications for
student assessment.

1 Introduction

Defining quantitative measures for knowledge and understanding has long been
a challenging problem [1]-[4]. Assessment of understanding and knowledge oc-
curs so frequently in every day life, and technology, and is of such consider-
able importance that a comprehensive mathematical theory of knowledge and
understanding would seem to have been required long ago. Historically, there
have been multiple attempts to define understanding and knowledge. One of the
earlier written theoretical descriptions of knowledge can be found in Plato’s dia-
logues. Much of Theaetetus is devoted to the rejection of Pythagora’s view that
all knowledge is perception[5]. Plato inherited from Socrates the view that there
can be knowledge in the sense of objective universally valid knowledge, such as
the properties of numbers and geometrical objects [6]. In the Republic, Plato
introduces the ”levels of knowledge” of the development of the human mind on
it’s way from ignorance to true knowledge[7].

Still true knowledge exists only if a foundation of axioms or a priori knowl-
edge is assumed to be true. Defining a minimum set of a priori knowledge is still
a subject of active research in metaphysics. Aristotle values the most abstract
knowledge as wisdom[8], but he encourages to test knowledge with our senses[6].
St. Augustine emphasizes abstract knowledge too, in De Beata Vita [9] ”only
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the wise man can be happy, and wisdom postulates knowledge of truth”. For
him ’a priori knowledge’ has to be experiencable either by our own senses or
others[9]. Leipnitz disagrees with the empiricists such as Locke that all our con-
cepts are ultimately derived from experience [6]. Kant sides with Leipnitz and
states: ”That all of our knowledge begins with experience, there is no doubt...
But though all our knowledge begins with experience, it does not follow that all
arises out of experience”[10] and details in On the Form and Principles: ”Since
then, in metaphysics, we do not find empirical principles, but in the very nature
of pure intellect, not as experiencable concepts, but as abstracted from the in-
trinsic laws of the mind (attending to its actions on the occasion of experience),
and so as acquired” [6][11].

A recent and largely successful attempt of a quantitative theory of knowl-
edge are formal languages in computer science, ranging from epsilon machines[12]
and Bayesian networks to object oriented computer languages such as JAVA[13].
While expert systems have become a standard ingredient of manufacturing tools
and consumer electronics, very little attempt has been made to assess and com-
pare the amount of knowledge of these systems. The measure that comes closet
to a measure of knowledge is Shannon’s entropy[14], or average information con-
tent of a message. In information theory, the actual meaning of the message is
unimportant. Instead the moment of surprise of the message, and the quality of
transmission are measured.

Assessment of knowledge is a standard issue in education. National and In-
ternational standardized test attempt to assess the knowledge of the students.
Concept maps were developed by Ausubel [15], Novak and Gowin[16] to mea-
sure the change of the structure and organization of an individual’s knowledge
during the learning process (Anderson[17], Bruer [18], Stoddart [19]) in many
areas [20] but little is known about the statistical and topological properties, in
particular individual reproducibility and the predictive power of the test results.
At this point, the philosophy of knowledge, the computer science approach to
knowledge, and the assessment of knowledge in education appear to be quite
disconnected.

In this paper, we try to bridge the gaps. We introduce several quantities to
measure the amount of knowledge of an agent. One of these measures emphasis
the value of the most abstract knowledge in line with Plato and St. Augustine,
another measures emphasis the value of less abstract and a priori knowledge in
line with Locke. From computer science, we adapt the definition of an agent, as an
information processing system, including students, AI computer programs, and
electronic courseware[21]. We study the scaling of these measures as a function
of the prerequisite knowledge.

We classify knowledge in levels of abstraction, similar to Plato’s classifica-
tion, except that we use such levels only for classifying knowledge within a given
discipline. A discipline is a given field of interest or a set of tasks with com-
mon properties, such as Algebra or Physics. We label knowledge as common
knowledge if all of the agents know it. We don’t enter into the discussion about
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a priori knowledge and derived common knowledge, therefore adapting Kant’s
view. However, we introduce a special name for knowledge that is required to
describe the concepts of a given discipline, but is neither common knowledge,
nor part of that discipline and call it prerequisite knowledge. We distinguish be-
tween common knowledge concepts and prerequisite concepts. Discipline specific
concepts are for solving typical tasks within a discipline, whereas, prerequisite
concepts solve other tasks, often more basic tasks. The collection of discipline
specific concepts and relations, is our definition of knowledge. More specific,
the collection of least abstract discipline specific knowledge we call know-how
or practical knowledge[23], whereas the collection of most abstract discipline
specific knowledge is labeled as wisdom or expert knowledge.

We assume that in each level of abstraction, knowledge is structured in terms
of concepts, where each concept is referenced by an identifier, such as a name
or a symbol and contains (i) an objective (ii) a definition complemented by
(iii) a collection of ”like-this”-examples [22] and ”hands-on examples” [1], (iv)
a collection of applications, and (v) a list of related concepts. We assume that
each component, is given as one or several ”trains of reasoning” [1]. A ”train
of reasoning” is a sequence of sentences in a spoken or a formal language that
include cartoon-style illustrations or animations, which are comprehendible by
the agent.

The objective specifies a task such as ”this concept establishes a relation
between force, mass and acceleration”. This task is solved in the definition. The
definition of an abstract concept, is typically a short sequence of sentences and
illustrations that define a quantity, such as ”density” or describe a relationship
between concepts. For example, Newton’s law describes a relation between mass,
force, and acceleration.

The examples in a concept are problem-solution pairs, where the solution is
a derived from the definition of the concept. The applications in a concept are
problem-solution pairs which require repeated use of the concept or illustrate
relations to other disciplines. Some of the applications are typically hands-on
[1]. Applications relate the concept to common knowledge [24]. In contrast to
the methods in the applications, the definition leaves the sequence of sentences
and illustrations ambiguous wherever permissible and employs discipline specific
concepts that are as abstract as possible. This briefness and high level of ab-
straction can make the definition appear ambiguous. We feel that it is important
to employ the use of examples because they are less abstract and resolve some
of that ambiguity.

An agent knows a concept, if it can tell the identifiers, reproduce the defini-
tion, give examples, applications, solve problems which are very similar to the
given examples and applications, and can list related concepts. This implies that
the agent knows a concept, if it knows all sub-concepts of the concept and can
name, but does not necessarily know related concepts. Sub-concepts are those
concepts, which are used in the definition, examples, and applications. In this
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paper, we study how the unknown prerequisite concepts limit knowledge. Know-
ing a concept is a prerequisite for understanding.[25] If the agent is able to give
it’s own interpretations and translations of the concept, the agent has an under-
standing of the concept.

If two concepts have a relation, i.e. similarities in their facts, methods, ex-
planation, or typical application, they are called related. The concepts and their
relations form a hierarchical conceptual network. If two concepts have a strong
relation, this relation can be a concept by itself, an abstract concept[26].

2 A Simple Model of Conceptual Networks

We study conceptual networks for a given field of interest or discipline. A con-
ceptual network is a cross-referenced library of concepts Ci = 1 . . . N [27]. We
extracted kinematics concepts from the highlighted equations in Serway and
Faughn, College Physics[28]. Each concept Ci solves a typical task. The agent is
described with a set of indicators, ci = 1, 2, 3, . . . , N , and pj , j = 1, 2, 3, ..., Np.
ci is set equal to 1 if the agent knows all the prerequisite concepts which are
used in the description of the concept, otherwise it is set equal to zero. pj is set
equal to 1 if the agent knows the prerequisite concept Pj perfectly, otherwise it
is set equal to zero pj = 0, where j = 1, 2, 3, . . .. pi,D is set equal to 1 if the agent
knows the description of the concept, otherwise it is set equal to zero, pi,D = 0.
Then ci, the knowledge of the agent, is defined as:

K =
N∑

i=1

wici, (1)

where wi is a measure for the importance or weight of each concept. If < ci > is
the probability that an agent knows the concept Ci then the expectation value
for the knowledge is:

< K >=
N∑

i=1

wi < ci > . (2)

We assume that the agent knows common knowledge, whereas it knows prereq-
uisite concepts Pj , j = 1, 2, ..., Np only with probability p.

A concept is called a base concept if it contains only prerequisite concepts
and common knowledge. The number of base concepts is N1. Abstract concepts
of level L = 2 contain at least one base concept in the same discipline. If the
base concept is replaced by it’s own description in a level 2 concept, then this
is called a substitution. For example, in a physics mechanics class, position x(t)
is a prerequisite concept, displacement dx = x(t + dt) − x(t) is a base concept
and v(t) = dx/dt is a level 1 concept. If dx is replaced by x(t + dt) − x(t) in
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Fig. 1. The number of concepts NL as a function of the level of abstraction L in
kinematics (left). The number of substitutions required NS for a full substitution of a
level L concept in kinematics.

v(t) = dx/dt = (x(t + dt) − x(t))/dt, the displacement is substituted by its de-
scription of the velocity. If a concept contains an abstract concept of level Li

and possibly some lower levels, it is called an abstract concept of level Li + 1.
The number of concepts of abstraction level L within a given discipline is called
NL. We assume the NL is constant for L ≤ L̂ and NL = 0 else . Fig. 1 shows the
NL versus the level L for kinematics[28]. The mean value is NL=5 and L̂ = 6.

If the lower level concepts are recursively substituted by their descriptions,
then the concept is called ”fully-substituted”. Ns is the average number of sub-
concepts required to describe a level L concept in terms of prerequisite concepts
and common knowledge concepts. We assume that NS increases exponentially
with L:

NS = α ∗ λL. (3)

This assumption is supported by the data shown in Fig. 1. For kinematics we
find α = 1 and λ = 1.6.

When a concept is fully substituted, it’s description contains a certain number
of prerequisite concepts NP and a certain number of common knowledge concepts
NC . Fig. 2 suggests that NP increases linearly for small L, NP = 0.5+2 ∗L and
is constant NP = 6.5 for L ≤ 3. In this paper, we assume that NP is constant.
The number of common knowledge concepts increases linearly with the level of
abstraction:

NC = NC,0 + nC ∗ L. (4)

For kinematics we find NC,0 = 1, and nC = 0.6, hence NC = 1 + 0.6 ∗ L.
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Fig. 2. The number of prerequisite concepts in a fully-substituted concept NP as a
function of the level of abstraction L for kinematics (left). The number of common
knowledge concepts in a fully-substituted concept NC as a function of the level of
abstraction L for kinematics.

The probability of knowing a concept with n sub-concepts
is pi1 , pi2 , pi3 , . . . , pin

. For each agent the sequence of indicators
{pi1 , pi2 , pi3 , . . . , pin} is a sequence of zeros and ones {0, 1, 1, 0, ....0} of
length n. If we suppose that the indicators are statistically independent, then
the probability that the agent knows a concept of level L is:

PL = pNP ∗ pNs

D = pNP ∗ pα∗λL

D , (5)

where p is the probability of knowing a prerequisite concept, and pD is the
probability of knowing the description of a discipline-specific concept. In Eqn.
5, the first factor reflects the requirement that the agent knows all prerequisite
concepts in the fully-substituted concept. The second term guarantees that the
agent knows the descriptions of sub-concepts required for a full substitution.
We define the maximum level of abstraction, which the agent can reach by the
condition NL ∗PL = 1, where the agent has to know at least one level L concept.
Solving this equation for L yields the maximum level of abstraction Lmax.

Lmax =
ln − ln NL∗pNp

a∗ln pD

lnλ
. (6)

To determine the knowledge of an agent, one needs to model the importance
of the concepts wi. There are two simple models. In the first model we assume,
that all concepts are equally important since each concept matches one task.
Then wi = 1, for all i. In this case, knowledge (practical knowledge) is :

< K >P =
L̂∑

L=1

NL ∗ PL = pNP ∗
L̂∑

L=1

pα∗λL

D . (7)
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Hence, the practical knowledge scales with the probability of knowing a prereq-
uisite concept p and as a sum (or integral) of hyper-exponential functions of pD

in the level of abstraction L.
In a second model, we assume that the weight wi is proportional to in-

formation content of the concept. The probability of picking a concept with
NP + NC sub-concepts out of a set of M common knowledge and prerequisite
concepts is ρ = MNP +NC if NP + NC � M . Therefore, the information content
is I = ln(1/ρ) = (NP +NC) ∗ ln(M) and wi = I. In this case, knowledge (expert
knowledge) is:

< K >E= ln(M) ∗
L̂∑

L=1

(NP + NC) ∗ NL ∗ PL (8)

= ln(M) ∗ pNP

L̂∑

L=1

(NP + NC,0 + nc ∗ L) ∗ NL ∗ pα∗λL

D . (9)

Hence, the expert knowledge scales with the probability of knowing a prerequi-
site concept p like the practical knowledge, but increases even faster than the
practical knowledge as a function of pD in the level of abstraction L.

3 Related Models

In the previous section, we assumed that the number of substitutions increases
exponentially with the level of abstraction. In a linear graph, the number of
substitions would increase linearly, such as NS = NS,0 ∗ L. In this case, the
practical knowledge is:

< K >P =
L̂∑

L=1

NL ∗ PL = pNP ∗
L̂∑

L=1

p
NS,0∗L
D ≈ pNP ∗ p

NS,0∗L̂+1
D . (10)

Consequently, the practical knowledge scales both with the prerequisite knowl-
edge p and the knowledge of the field-specific concepts pD.

In the previous section, we assumed that the number of prerequisite concepts
NP does not depend on the level of abstraction L. However, the experimental
data indicate that at least for small L, NP increases linearly in L, such as
NP = NP,0 + nP ∗ L. In this case, the practical knowledge increases rapidly as
a function of p:

< K >P =
L̂∑

L=1

pNP,0+nP ∗L ∗ NL ∗ pα∗λL

D . (11)

Even if the experimental data for kinematics do not suggest this, one might
assume that the number of abstract concepts NL decreases with the level of
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abstraction L. We use NL = NL,0 ∗ δL, an exponential model, where 0 < λ < 1.
In this case, the practical knowledge is:

< K >P =
L̂∑

L=1

NL,0 ∗ δL ∗ pNP ∗ pNP

D . (12)

4 Discussion

If we assume the agent is a perfect learner, the probability of knowing a
discipline-specific concept pD is determined by the amount of material covered
by a textbook or a course. The maximum level of abstraction has a logarithmic
singularity at pD = 100%, see Eqn. 6. The means, that if the textbook or course
is omitting just a very small fraction of the discipline concepts, this has a huge
negative impact on the maximum level of abstration that the student or com-
puter agent can achieve.

Knowledge scales only as a power-law of p, the probability of knowing know-
ing prerequisite concepts, see Eqn. 7 and Eqn. 8. This means that the knowledge
does not decrease very rapidly, when p decreaes. Perhaps, this accommodates
students who have learned a comparatively low level of prerequisite knowledge.

Currently, many printed textbooks are following a linear sequence of con-
cepts through a conceptual network, where each new idea is deduced from the
previous concept with very little reference to the branched topological struc-
ture of conceptual networks. In contrast, most electronic courseware makes the
student aware of all the relations when a new concept is introduced; such as on-
line C-computer langungage manuals, Windows NT Help, Yahoo Search Engine,
Kaplan software and SAT English test preparation software. Courseware with
intense cross-referencing exposes the student to concepts, which she or he may
learn much later or never learn. In the past, there has been extensive discussion
by Hamlyn[29] about the advantages and disadvantages of referring to unknown
concepts for teaching. Cross-referencing is much easier in electronic courseware.
In kinematics, 20 out of 25 concepts describe relations (80%). Considering that
the largest part of knowledge is attributable to abstract knowledge, electronic
courseware may help to improve learning environments since it supports rela-
tions.

The kinematics data suggest that substitutions required to substitute a con-
cept of level L by prerequisite and common knowledge concepts increases expo-
nential in L. If the number of subtitution would increase linearly, each concepts
would be at a higher level of abstration. Representing concepts at a compara-
tively low level of abstraction, might be beneficial for some learners. In kinemat-
ics the higest level of abstration is L̂ = 6 (see Fig. 1). Humans can memorize
7 ± 2 chunks of information in short term memory[30] depending on their level
of intelligence. Possibly, there is a connection between the level of abstraction in
kinematics L̂ = 6 and human short term memory.
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It is surprising, that both the number of concepts NL at a given level of
abstraction (see. Fig. 1) and the number of prerequisite concepts NP required
for a full-substitution of a concept (see Fig. 2) do not seem to depend on the
level of abstraction L.

We give thanks to M. Osborne, E.A. Jackson, P. Melby, and D. Smyth for
thoughtful discussion. This research was supported by the Office of Naval Re-
search Grant No. N00014-96-1-0335.
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