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Abstract. Quantum state diffusion with moving basis approach is for-
mulated for computation of Wigner functions of open quantum systems.
The method is applied to two quantum nonlinear dissipative systems.
Quantum dynamical manifestation of chaotic behavior, including emer-
gence of chaos, as well as the formation of Hopf bifurcation in quantum
regime are studied by numerical simulation of ensemble averaged Wigner
functions.

1 Introduction and Models

All real experiments in quantum physics always deal with open systems, which
are not even approximately isolated and significantly affected by the environ-
ment. Interaction with the environment leads to dissipation and decoherence,
i.e. to irreversible loss of energy and coherence, and can monitor some of the
system observables. Decoherence can destroy the quantum-mechanical interfer-
ence or quantum superposition of states. All quantum systems suffer from de-
coherence, but it has very specific implications in area of quantum information
and quantum computation.

The present paper is devoted to the problem of numerical simulation of dissi-
pation and decoherence in open quantum system. We concentrated mainly on in-
vestigation of so-called quantum chaotic systems - quantum systems, which have
chaotic dynamic in a classical limit. Their analysis requires the high-performance
calculations as well as the development of new numerical algorithms.

One of the most practical tools for analyzing the time-evolution of an open
quantum system is the master equation for the density matrix. However, the ana-
lytical studies in this area are very difficult and the solutions of master equations
have been established only for relatively simple models. We remind the reader of
a common approach to analysis of an open system. The starting point is the mas-
ter equation in Lindblad form [1] for reduced density matrix ρ(t) = Tr(ρtot(t))
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which is obtained from the total density matrix of the universe by tracing over
the environment Hilbert space

∂ρ

∂t
= − i

h̄
[H,ρ] +

∑
i

(
LiρL+

i − 1
2
L+

i Liρ − 1
2
ρL+

i Li

)
. (1)

Here H is the Hamiltonian of the system and Li are Lindblad operators which

represent the effect of the environment on the system in a Markov approximation.
Numerically there is often a large advantage in representing a system by quantum
state rather than a density matrix. On this direction, there are many ways to
”unraveling” the master equation into ”trajectories” [2]. Our numerical analysis
is based on the quantum state diffusion (QSD) approach which represents the
density matrix into component stochastic pure states |Ψξ(t)〉 describing the time-
evolution along a quantum trajectory [3]. According to QSD the reduced density
operator is calculated as the ensemble mean ρ(t) = M(|Ψξ(t)〉 〈Ψξ(t)|), with M
denoting the ensemble average. The corresponding equation of motion is

|dΨξ〉 = − i

h̄
H |Ψξ〉 dt − (2)

1
2

∑
i

(
L+

i Li − 2
〈
L+

i

〉
Li + 〈Li〉

〈
L+

i

〉) |Ψξ〉 dt +
∑

i

(Li − 〈Li〉) |Ψξ〉 dξi.

Here ξ indicates the dependence on the stochastic process, the complex Wiener
variables dξi satisfy the fundamental correlation properties:

M (dξi) = 0, M (dξidξj) = 0, M
(
dξidξ∗

j

)
= δijdt, (3)

and the expectation value equals 〈Li〉 = 〈Ψξ |Li|Ψξ〉.
In what follows we apply this method for numerical calculations of quantum

distributions averaged on trajectories. Among them the Wigner function play a
central role because provides a wide amount of information about the system
and also provides a pictorial view. Below we shall give the results of numerical
calculations for two models of driven, dissipative nonlinear oscillators, which are
relevant to some systems in quantum optics.

One of those is the model of nonlinear oscillator driven by two periodic forces,
which described by the Hamiltonian

H = h̄ω0a
+a + h̄χ(a+a)2 + h̄

[
(Ω1 exp(−iω1t) + Ω2 exp(−iω2t)) a+ + h.c.

]
,
(4)

where a, a+ are boson annihilation and creation operators, ω0 is an oscillatory
frequency, ω1 and ω2 are the frequencies of driving fields, and χ is the strength
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of the anharmonicity. The couplings with two driving forces are given by Rabi
frequencies Ω1 and Ω2.

The other is the model of two driven harmonic oscillators coupled by a non-
linear process, which is described by the following Hamiltonian

H = h̄ω1a
+
1 a1 + h̄ω2a

+
2 a2 + ih̄

(
Ee−iωta+

1 − E∗e−iωta1
)

+ ih̄
k

2
(
a+2
1 a2 − a2

1a
+
2

)
.

(5)

Here a1 , a2 are the operators of the modes at the frequencies ω1 and ω2 re-
spectively, k is the coupling coefficient between the modes , which in the case of
an optical interaction can be proportional to the second-order nonlinear suscep-
tibility χ(2) ; E is a complex amplitude of the periodic force at the frequency
ω.

2 MQSD Algorithm for Wigner Function

It seems naturally to use the Fock’s state basis of two harmonic oscillators
{|n〉1 ⊗ |m〉2 ; n, m ∈ (0, 1, 2, ..., N)} for numerical simulation. Unfortunately, in
the most interesting cases, which are relevant to experiments, the effective num-
ber of Fock’s states quickly becomes impractical. On this reason, it is very
difficult to obtain a single quantum trajectory in such regimes, not to men-
tion performing an ensemble averaging. However, it is possible to reduce signifi-
cantly the number of need basis states by choosing an appropriate basis. It was
demonstrated in Ref.[4] considering quantum state diffusion with moving basis
(MQSD). Its advantages for computation was also shown in [4]. In this paper we
develope the MQSD method for calculation of distribution functions including
Wigner functions.

At first, we shortly describe the application of MQSD method for the numer-
ical simulation of Wigner function using the standard definition based on the
density matrix [2]. We have for each of the modes of the harmonic oscillators

Wi(α) =
1
π2

∫
d2γTr(ρiD(γ)) exp(γ∗α − γα∗), (6)

where the reduced density operators for each of the modes are constructed by
tracing over the other mode

ρ1(2) = Tr2(1)(ρ), ρ = M(|Ψξ〉 〈Ψξ|). (7)

We use the expansion of the state vector |Ψξ(t)〉 in the basis of excited coherent
states of two modes as

|Ψξ(t)〉 =
∑

aξ
nm(αξ, βξ) |αξ, n〉1 |βξ, m〉2 , (8)

where

|α, n〉1 = D1(α) |n〉1 , |β, m〉2 = D2(β) |m〉2 (9)
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are the excited coherent states centered on the complex amplitude α = 〈a1〉 ,
β = 〈a2〉 . Here |n〉1 and |m〉2 are Fock’s number states of the fundamental and
second -harmonic modes, and D1 and D2 are the coherent states displacement
operators

Di(α) = exp(αa+
i + α∗ai). (10)

As it is known, the MQSD method is very effective for numerical simulation
of quantum trajectories. However, the problem is that in this approach the two
mode state vector |Ψξ(t)〉 is expressed in the individual basis depending on the
realization. It creates the additional definite difficulties for calculation of the
density matrix at each time of interest on the formula (7), which contains the
averaging on the ensemble of all possible states. In practical point of view, it is
useful to operate with state vector |Ψξ(t)〉 reduced to a basis which is the same
for all realizations of the stochastic process ξ(t). To avoid this we express the
density operators as

ρi(t) =
∑
nm

ρ(i)
nm(t) |σ, n〉 〈σ, m| (11)

in the basis of excited Fock states with an arbitrary coherent amplitude σ. It
gives for the Wigner function (6)

Wi(α + σ) =
∑
nm

ρ(i)
nmWnm(r, θ), (12)

where (r, θ) are polar coordinates in the complex phase-space X = Reα = r cos θ,
Y = Imα = r sin θ and the coefficients Wnm are

Wmn(r, θ) =




2
π (−1)n

√
n!
m!e

i(m−n)θ(2r)m−ne−2r2
Lm−n

n (4r2), m ≥ n

2
π (−1)m

√
m!
n! e

i(m−n)θ(2r)n−me−2r2
Ln−m

m (4r2), n ≥ m


 ,

(13)

where Ln−m
m are Laguerre polynomials.

As to the density matrix elements, they equal to

ρ
(1)
nm(σ1) = M

{∑ 〈n|D1(αξ − σ1) |q〉 〈k|D+
1 (αξ − σ1) |m〉 a

(ξ)
qp (αξ, βξ)a

(ξ)∗
kp (αξ, βξ)

}
,

(14)

ρ
(2)
nm(σ2) = M

{∑ 〈n|D2(βξ − σ2) |q〉 〈k|D+
2 (βξ − σ2) |m〉 a

(ξ)
pq (αξ, βξ)a

(ξ)∗
pk (αξ, βξ)

}
.

(15)

In short, the MQSD algorithm for numerical simulation is the following. In
the initial basis centered at α = β = 0 each set of stochastic dξi determines a
quantum trajectory through Eqs.(2),(3).Then the state vectors (8) are calculated
using a moving basis.
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3 Pictorial View of Hopf Bifurcation

Now we apply the above numerical algorithm to calculate the ensemble-averaged
Wigner function for the system of nonlinearly coupled, driven oscillators in con-
tact with its environment. This model is accessible for experiments and is re-
alized at least in the second-harmonic generation (SHG) in an optical cavity
[5]. Intracavity SHG consists in transformation, via a χ(2) nonlinear crystal, of
an externally driven fundamental mode with the frequency ω1 into the second-
harmonic mode with the frequency ω2 = 2ω1 (ω1 + ω2 → ω2). The system is
described by both the Hamiltonians (5), and the Eqs.(1), (2). The Lindblad
operators are Li =

√
γiai , (i = 1, 2), and γ1, γ2 are the cavity damping rates.

In the classical limit, this system is characterized by Hopf bifurcation
which connect a steady-state regime to a temporal periodic regime (so-called
self-pulsing instability [6]). In quantum treatment all quantum-mechanical
ensemble-averaged quantities reach stable constant values at an arbitrary time
exceeding the transient time. Therefore, the question has been posed what
is the quantum-mechanical counerpart of a classical instability. The Wigner
functions for the fundamental and second-harmonic modes have been analyzed
in the vicinity of the Hopf bifurcation in Ref. [7], where it was shown that they
describe ”quantum instability”. In this paper we expand our results [7] on the
above Hopf-bifurcation range using MQSD algorithm. Below Hopf bifurcation
the Wigner functions of both modes are Gaussian in the phase-space plane
centered at x = y = 0. With increasing E we enter into critical transition
domain, in the vicinity of Hopf bifurcation, where a spontaneous breaking of
the phase symmetry occurs. The Wigner functions above bifurcation point at
E/Ecr = 2 averaged over 1000 quantum trajectories are shown in Fig.1.

Fig. 1. The Wigner functions of the second-harmonic mode (a) and the fundamental
mode (b) beyond the Hopf bifurcation for the parameters: γ1 = γ2 = γ, k/γ = 0.3,
Ecr/γ = 20.
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It is obvious, that the appearance of two side humps of Wigner functions cor-
respond to two most probable values of phases. Generally speaking, the contour
pots in (x, y) plane of the Wigner functions correspond to phase trajectories of
the system in the classical limit. We show these results on Fig.2.

Fig. 2. Phase-space trajectory (a) and contour plot of Wigner function (b) for the
fundamental mode.

4 Quantum Chaos on Wigner Functions
Our second example is the model of dissipative nonlinear oscillator driven by
two periodic forces of different frequencies and interacting with heat bath. This
model presents an example of open time-dependent quantum system showing
dissipative chaos in classical limit. The model was proposed to study quantum
stochastic resonance in the authors’ previous paper [8], where it is shown, in
particular, that the model is available for experiments. It is described by Hamil-
tonian (4) and Eqs. (1), (2), with the Lindblad operators L1 =

√
(N + 1) γa,

L2 =
√

Nγa+, where γ is the spontaneous decay rate and N denotes the mean
number of quanta of a heat bath. For Ω2 = 0 this system is reduced to a single
driven dissipative anharmonic oscillator which is a well known model in nonlin-
ear physics (see Ref. [9] and [8] for full list of references). In the classical limit
the considered double driven oscillator exhibits regions of regular and chaotic
motion. Indeed, our numerical analysis of the classical equations of motion in the
phase-space shows that classical dynamics of the system is regular in domains
δ � γ and δ � γ, where δ = ω2− ω1, and also when Ω1 � Ω2 or Ω2 � Ω1. The
dynamics is chaotic in the range of parameters δ ∼ γ and Ω1 ' Ω2.

Now we come to the question of what is the quantum manifestation of a
classical chaotic dynamics on Wigner function? These are important but rather
difficult question of relevant to many problems of fundamental interest [10].
Our numerical analysis will show that the quantum dynamical manifestation
of chaotic behavior does not appear on ensemble averaged oscillatory excita-
tion numbers, but is clearly seen on the probability distributions. In Figs.3 we
demonstrate moving our system from regular to chaotic dynamics by plotting
the Wigner function of the system’s quantum states for three values of Ω2 :
Ω2/γ = 1 (a), Ω2/γ = Ω1/γ = 10.2 (b), Ω2/γ = 20 (c), in a fixed moment of
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Fig. 3. Transition from regular to chaotic dynamics on the Wigner functions.The pa-
rameters are: χ/γ = 0.7, ∆/γ = −15, Ω1/γ = Ω2/γ = 10.2, δ/γ = 5. The averaging is
over 2000 trajectories.

time. The values of ∆/γ (∆ = ω0 − ω1), χ/γ, and Ω1/γ are chosen to lead to
bistability in the model of single driven oscillator (Ω2 = 0).

We can see that for the case of a weak second force Fig.3(a) the Wigner
function has two humps, corresponding to the lower and upper level of excitation
of anharmonic oscillator in the bistability region. The hump centered close to x =
y = 0 describes the approximately coherent lower state, while the other hump
describes the excited state. The graphs in Fig.3 are given at an arbitrary time,
exceeding the damping time. As calculations show, for the next time intervals
during the period of modulation t = 2π/δ, the hump corresponding to the upper
level rotates around the central peak. When we increase the strength of the
second force, the classical system reaches to a chaotic dynamics. The Wigner
function for the chaotic dynamics is depicted in Fig.3(b). Further increasing Ω2,
the system returns to the regular dynamics. The corresponding Wigner function
at an arbitrary time exceeding the transient time is presented in Fig.3(c). It
contains only one hump, rotating around the centre of the phase-space within
the period. As we see, the Wigner function reflecting chaotic dynamics (Fig.3(b)),
has a complicated structure. Nevertheless, it is easy to observe that its contour
plots in (x, y) plane are generally similar to the corresponding classical Poincaré
section. Now we will consider this problem in more detail, comparing the results
for contour plots with classical strange attractors on the classical maps, for the
same sets of parameters. The results are shown in Fig.4.

It can be seen in Fig.4.(a) that for the deep quantum regime (χ/γ = 0.7,
∆/γ = −15, δ/γ = 5), the contour plot of the Wigner function is smooth and
concentrated approximately around the attractor (Fig.4(b)). Nevertheless, the
different branches of the attractor are hardly resolved in Fig.4.(a). It can also be
seen, that in this deep quantum regime, an enlargement of the Wigner function
occurs in contrast to the Poincaré section.

Taking a smaller χ/γ, the contour plot of the Wigner function approaches
the classical Poincaré section. This can be seen in Figs.4(d),(c). For the last case
the correspondence is maximal, and some details of the attractor (Fig.4(d)) are
resolved much better in Fig.4(c).
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Fig. 4. Contour plot of Wigner function (a), (c) corresponding to quantum chaos and
Poincaré sections (b), (d) (approximately 20000 points) for the classical complex am-
plitude of double driven anharmonic oscillator, plotted at times of constant phase
δt = 2πn, (n = 1, 2, 3, ...). The parameters for the cases of (a), (c) are the same as in
(b), (d) respectively.

5 Conclusion

We have formulated the effective method for computation of quantum distribu-
tions based on MQSD approach to open quantum systems. Using this approach
we have numerically investigated the Wigner functions for two dissipative quan-
tum systems showing both instability and chaos in a classical limit. We have
shown how quantum instability and quantum chaos are displayed on the Wigner
functions.
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