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Abstract. Parallel Computational Science and Engineering (CSE) ap-
plications often exhibit irregular structure and dynamic load patterns.
Many such applications have been developed using MPI. Incorporating
dynamic load balancing techniques at the application-level involves sig-
nificant changes to the design and structure of applications. On the other
hand, traditional run-time systems for MPI do not support dynamic
load balancing. Object-based parallel programming languages, such as
Charm++ support efficient dynamic load balancing using object migra-
tion. However, converting legacy MPI applications to such object-based
paradigms is cumbersome. This paper describes an implementation of
MPI, called Adaptive MPI (AMPI) that supports dynamic load bal-
ancing for MPI applications. Conversion from MPI to this platform is
straightforward even for large legacy codes. We describe our positive ex-
perience in converting the component codes ROCFLO and ROCSOLID
of a Rocket Simulation application to AMPI.

1 Introduction

Many Computational Science and Engineering (CSE) applications under devel-
opment today exhibit dynamic behavior. Computational domains are irregular
to begin with, making it difficult to subdivide the problem such that every parti-
tion has equal computational load, while optimizing communication. In addition,
computational load requirements of each partition may vary as computation pro-
gresses. For example, applications that use Adaptive Mesh Refinement (AMR)
techniques increase the resolution of spatial discretization in a few partitions,
where interesting physical phenomena occur. This increases the computational
load of those partitions drastically. In applications such as the simulation of
pressure-driven crack propagation using Finite Element Method (FEM), extra
elements are inserted near the crack dynamically as it propagates through struc-
tures, thus leading to severe load imbalance. Another type of dynamic load
variance can be seen where non-dedicated platforms such as clusters of worksta-
tions are used to carry out even regular applications [BK99|. In such cases, the
availability of individual workstations changes dynamically.
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Such load imbalance can be reduced by decomposing the problem into sev-
eral smaller partitions (many more than the available physical processors) and
then mapping and re-mapping these partitions to physical processors in response
to variation in load conditions. One cannot expect the application programmer
to pay attention to dynamic variations in computational load and communica-
tion patterns, in addition to programming an already complex CSE application.
Therefore, the parallel programming environment needs to provide for dynamic
load balancing under the hood. To do this effectively, it needs to know the precise
load conditions at runtime. Thus, it needs to be supported by the runtime system
of the parallel language. Also, it needs to predict the future load patterns based
on current and past runtime conditions to provide an appropriate re-mapping of
partitions.

Fortunately, an empirical observation of several such CSE applications sug-
gests that such changes occur slowly over the life of a running application, thus
leading to the principle of persistent computation and communication struc-
ture [KBB00|. Even when load changes are dramatic, such as in the case of
adaptive refinement, they are infrequent. Therefore, by measuring variations of
load and communication patterns, the runtime system can accurately forecast
future load conditions, and can effectively load balance the application.

Charm++[KK96] is an object-oriented parallel programming language that
provides dynamic load balancing capabilities using runtime measurements of
computational loads and communication patterns, and employs object migra-
tion to achieve load balance. However, many CSE applications are written in
languages such as FORTRAN, using MPI (Message Passing Interface) |[GLS94|
for communication. It can be very cumbersome to convert such legacy appli-
cations to newer paradigms such as Charm++ since the machine models of
these paradigms are very different. Essentially, such attempts result in complete
rewrite of applications.

Frameworks for computational steering and automatic resource management,
such as AutoPilot [RVSR98|, provide ways to instrument parallel programs for
collecting load information at runtime, and a fuzzy-logic based decision engine
that advises the parallel program regarding resource management. But it is left
to the parallel program to implement this advice. Thus, load balancing is not
transparent to the parallel program, since the runtime system of the parallel
language does not actively participate in carrying out the resource management
decisions. Similarly, systems such as CARMI [PL95] simply inform the parallel
program of load imbalance, and leave it to the application processes to explicitly
move to a new processor. Other frameworks with automatic load balancing such
as the FEM framework [BK00], and the framework for Adaptive Mesh Refine-
ment codes [BN99] are specific to certain application domains, and do not apply
to a general programming paradigm such as message-passing or to a general
purpose messaging library such as MPI. TOMPI [Dem97 and TMPI [TSY99]
are thread-level implementations of MPI. The techniques they use to convert
legacy MPI codes to run on their implementations are similar to our approach.
However, they do not support FORTRAN. Also, they do not provide automated
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dynamic load balancing. TOMPI is a single processor simulation tool for MPI
programs, while TMPI attempts to implement MPI efficiently on shared memory
multiprocessors.

In this paper, we describe a path we have taken to solve the problem of
load imbalance in existing FORTRAN9O-MPI applications by using the dynamic
load balancing capabilities of Charm-++ with minimal effort. The next section
describes the load-balancing framework of Charm++ and its multi-partitioning
approach. In section 3, we describe the implementation of Adaptive MPI, which
uses user-level migrating threads, along with message-driven objects. We show
that it is indeed simple to convert existing MPI code to use AMPI. We discuss
the methods used and efforts needed to convert actual application codes to use
AMPI, and performance implications in section 4.

2 Charm++4 Multi-partitioned Approach

Charm++ is a parallel object-oriented language. A Charm++ program consists
of a set of communicating objects. These objects are mapped to available pro-
cessors by the message-driven runtime system of Charm++. Communication
between Charm++ objects is through asynchronous object-method invocations.
Charm++ object-methods (called entry methods) are atomic. Once invoked,
they complete without waiting for more data (such as by issuing a blocking re-
ceive). Charm++ tracks execution times (computational loads) and communica-
tion patterns of individual objects. Also, method execution is directed at objects,
not processors. Therefore, the runtime system can migrate objects transparently.
Charm++ incorporates a dynamic load balancing (LB) framework, that acts
as a gateway between the Charm++ runtime system and several “plug-in” load
balancing strategies. The object-load and communication data be viewed as a
weighted communication graph, where the connected vertices represent com-
municating objects. Load balancing strategies produce a new mapping of these
objects in order to balance the load. This is an NP-hard multidimensional opti-
mization problem, and producing optimal solution is not feasible. We have exper-
imented with several heuristic strategies, and they have been shown to achieve
good load balance [KBB00]. The new mapping produced by the LB strategy is
communicated to the runtime system, which carries out object migrations.
NAMD [KSB*99], a molecular dynamics application, is developed using
Charm++. As simulation of a complex molecule progresses, atoms may move
into neighboring partitions. This leads to load imbalance. Charm++ LB frame-
work is shown to be very effective in NAMD and has allowed NAMD to scale
to thousands of processors achieving unprecedented speedups among molecu-
lar dynamics applications (1252 on 2000 processors). Another application that
simulates pressure-driven crack propagation in structures has been implemented
using the Charm++ LB framework [BK00], and has been shown to effectively
deal with dynamically varying load conditions (Figure [I.) As a crack develops
in a structure discretized as a finite element mesh, extra elements are added near
the crack, resulting in severe load imbalance. Charm++ LB framework responds
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to this load imbalance by migrating objects, thus improving load balance, as can
be seen from increased throughput measured in terms of number of iterations
per second.
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Fig.1l. Performance of the Crack-Propagation application using Charm++ load-
balancing framework.

The key to effectively using the Charm++ LB framework is to split the
computational domain into several small partitions. These smaller partitions,
called virtual processors, (or chunks) are then mapped and re-mapped by the
LB framework in order to balance the load across physical processors.

Having more chunks to map and re-map results in better load balance. Large
number of chunks result in smaller partitions that utilize the cache better. Also,
having more independent pieces of computation per processor results in better
latency tolerance with computation/communication overlap. However, mapping
several chunks on a single physical processor reduces the granularity of parallel
tasks and the computation to communication ratio. Thus, multi-partitioning
present a tradeoff in the overhead of virtualization and effective load balance.

In order to study this tradeoff, we carried out an experiment using a Finite
Element Method application that does structural simulation on an FEM mesh
with 300K elements. We ran this application on 8 processor Origin2000 (250 MHz
MIPS R10K) with different number of partitions of the same mesh mapped to
each processor. Results are presented in figure[2. It shows that increasing num-
ber of chunks is beneficial up to 16 chunks per physical processor, as number of
elements per chunk decreases from 300K to about 20 K. This increase in per-
formance is caused by better cache behavior of smaller partitions, and overlap
of computation and communication (latency tolerance). Further, the overhead
introduced for 32 and 64 chunks (with 10K and 5K elements per chunk, respec-
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tively) per physical processor is very small. Though these numbers may vary
depending on the application, we expect similar behavior for many applications
that deal with large data sets and have near-neighbor communication.
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Fig. 2. Effects of multi-partitioning in an FEM application.

One way to convert existing MPI applications to the multi-partitioned ap-
proach is to represent an MPI process by a Charm++ object. However, this is not
trivial, since MPI processes contain blocking receives and collective operations
that do not satisfy the atomicity requirements of entry methods.

3 Adaptive MPI

AMPI implements MPI processes with user-level threads so as to enable them to
issue blocking receives. Alternatives are to use processes or kernel-level threads.
However, process context switching is costly, because it means switching the
page table, and flushing out cache-lines etc. Process migration is also costlier
than thread migration. Kernel-threads are typically preemptive. Accessing any
shared variable would mean use of locks or mutexes, thus increasing the overhead.
Also, one needs OS support for migrating kernel threads from one process to
another. With user-level threads, one has complete control over scheduling, and
also one can track the communication pattern among chunks, as well as their
computational and memory requirements.

It is difficult to migrate threads because any references to the stack have to
be valid after migration to a different address space. Note that a chunk may
migrate anytime when it is blocking for messages. At that time, if the thread’s
local variables refer to other local variables on the stack, these references may not
be valid upon migration, because the stack may be located in a different location
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in memory. Thus, we need a mechanism for making sure that these references
remain valid across processors. In the absence of any compiler support, this
means that the thread-stacks should span the same range of virtual addresses
on any processor where it may migrate.

Our first solution to this problem was based on a stack-copy mechanism,
where all threads execute with the same system stack, and contents of the thread-
stack were copied at every context-switch between two threads. If the system
stack is located at the same virtual address on all processors, then the stack
references will remain valid even after migration. This scheme’s main drawback
is the copy overhead on every context-switch (figure Bl). In order to increase
efficiency with this mechanism, one has to keep the stack size as low as possible
at the time of a context-switch.

Our current implementation of migratable threads uses a variant of the iso-
malloc functionality of PM? [ABN99]. In this implementation, each thread’s
stack is allocated such that it spans the same reserved virtual addresses across
all processors. This is achieved by splitting the unused virtual address space
among physical processors. When a thread is created, its stack is allocated from
a portion of the virtual address space assigned to the creating processor. This
ensures that no thread encroaches upon addresses spanned by others’ stacks on
any processor. Allocation and deallocation within the assigned portion of vir-
tual address space is done using the mmap and munmap functionality of Unix.
Since we use isomalloc for fixed size thread stacks only, we can eliminate sev-
eral overheads associated with PM? implementation of isomalloc. This results
in context-switching overheads as low as non-migrating threads, irrespective of
the stack-size, while allowing migration of threads. However, it is still more effi-
cient to keep the stack size down at the time of migration to reduce the thread
migration overheads.

3.1 Conversion to AMPI

Since multiple threads may be resident within a process, variables that were
originally process-private will now be shared among the threads. Thus, to convert
an MPI program to use AMPI, we need to privatize these global variables, which
typically fall in three classes.

1. Global variables that are “read-only”. These are either parameters that are
set at compile-time, or other variables that are read as input or set at the
beginning of the program and do not change during execution. It is not
necessary to privatize such variables.

2. Global variables that are used as temporary buffers. These are variables
that are used temporarily to store values to be accessible across subroutines.
These variables have a characteristic that there is no blocking call such as
MPI_recv between the time the variable is set and the time it is ever used.
It is not necessary to privatize such variables either.

3. True global variables. These are used across subroutines that contain block-
ing receives and therefore there is a possibility of a context-switch between
the definition and use of the variable. These variables need to be privatized.
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Fig. 3. Comparison of context-switching times of stack-copying and isomalloc-based
migrating threads with non-migrating threads.

To systematically privatize all global variables, we create a FORTRAN 90 type,
and make all the global variables members of that type. In the main program,
we allocate an instance of that type, and then pass a pointer to that instance to
every subroutine that makes use of global variables. Access to the members of
this type have to be made through this pointer.

A source-to-source translator can recognize all global variables and automat-
ically make such modifications to the program. We are currently working on
modifying the front-end of a parallelizing compiler [BEFT94] to incorporate this
translation. However, currently, this has to be done by hand. The privatization
requirement is not unique to AMPI. Other thread-based implementations of MPI
such as TMPI [TSY99] and TOMPI [Dem97] also need such privatization.

4 Case Studies

We have compared AMPI with the original message-driven multi-partitioning
approach to evaluate overheads associated with each of them using a typical
Computational Fluid Dynamics (CFD) kernel that performs Jacobi relaxation
on large grids (where each partition contains 1000 grid points.) We ran this
application on a single 250 MHz MIPS R10K processor, with different number
of chunks, keeping the chunk-size constant. Two different decompositions, 1-D
and 3-D, were used. These decompositions vary in number of context-switches
(blocking receives) per chunk. While the 1-D chunks have 2 blocking receive
calls per chunk per iteration, the 3-D chunks have 6 blocking receive calls per
chunk per iteration. However, in both cases, only half of these calls actually block
waiting for data, resulting in 1 and 3 context switches per chunk per iteration
respectively. As can be seen from figure d the optimization due to availability of
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local variables across blocking calls, as well as larger subroutines in the AMPI
version neutralizes thread context-switching overheads for a reasonable number
of chunks per processor. Thus, the load balancing framework can be effectively
used with user-level threads without incurring any significant overheads.
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Fig.4. Performance a Jacobi relaxation application. (Left) with 1-D decomposition.
(Right) with 3-D decomposition.

Encouraged by these results, we converted some large MPI applications de-
veloped as part of the Center for Simulation of Advanced Rockets (CSAR) at
University of Illinois. The goal of CSAR is to produce a detailed multi-physics
rocket simulation [HD98]. GEN1, the first generation integrated simulation code,
is composed of three coupled modules: ROCFLO (an explicit fluid dynamics
code), ROCSOLID (an implicit structural simulation code), and ROCFACE (a
parallel interface between ROCFLO and ROCSOLID) [PANT99]. ROCFACE
and ROCSOLID have been written using FORTRAN 90-MPI (about 10K and
12K lines respectively.) We converted each of these codes to AMPI. This con-
version, using the techniques described in the last section, resulted in very few
changes to original code. The converted codes can still link and run with orig-
inal MPI. In addition, the overhead of using AMPT instead of MPI is shown
(table [[) to be minimal, even with the original decomposition of one partition
per processor. We expect the performance of AMPI to be better when multiple
partitions are mapped per processor, similar to the situation depicted in figure
Also, the ability of AMPI to respond to dynamic load variations outweighs these
overheads.

5 Conclusion

Efficient implementations of an increasing number of dynamic and irregular com-
putational science and engineering applications require dynamic load balancing.
Many such applications have been written in procedural languages such as FOR-
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Table 1. Comparison of MPI and AMPI versions of ROCFLO (Fixed problem size)
and ROCSOLID (Scaled problem size). All timings are in seconds.

No. Of ROCFLO ROCSOLID

Processors MPI AMPI MPI AMPI
1 1637.55 1679.91 67.19 63.42
2 957.94 916.73 — —
4 450.13 437.64 - —
8 234.90 278.93 69.81 71.09
16 142.49 126.59 — —
32 61.21 63.82 70.70 69.99
64 - - 73.94 75.47

TRAN with message-passing parallel programming paradigm. Traditional imple-
mentation of message-passing libraries such as MPI do not support dynamic
load balancing. Charm++ parallel programming environment supports dynamic
load balancing using object-migration. Applications developed using Charm-++
have been shown to adaptively balance load in presence of dynamically chang-
ing load conditions caused even by factors external to the application, such as
in timeshared clusters of workstations. However, converting existing procedural
message-passing codes to use object-based Charm++ can be cumbersome. We
have developed Adaptive MPI, an implementation of MPI on a message-driven
object-based runtime system, and user-level threads, that run existing MPI ap-
plications with minimal change, and insignificant overhead. Conversion of legacy
MPI programs to Adaptive MPI does not need significant changes to the origi-
nal code structure; the changes that are needed are mechanical and can be fully
automated. We have converted two large scientific applications to use Adaptive
MPIT and the dynamic load-balancing framework, and have shown that for these
applications, the overhead of AMPI, if any, is very small. We are currently work-
ing on reducing the messaging overhead of AMPI, and also automating the code
conversion methods.
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