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Abstract. Mapping one-measured (“line”, “ring”) and two-measured (“mesh”,
“torus”) parallel program structures onto a distributed computer system (DCS)
regular structures (“torus”, “two-measured circulant”, “hypercube”) with faulty
elements (processor nodes and links) is investigated. It is shown that: 1) one-
measured program structures mapped better than two-measured structures; 2)
when failures are injected to the DCS structure the one-measured structures
mapping aggravated very lesser  than the two-measured structures mapping.
The smaller a node degree of a program graph and the greater a node degree of
a DCS graph the better the mapping quality. Thus, the one-measured program
structure’s mappings are more fault-tolerant than two-measured structure’s one
and more preferable for organization of computations in the DCS with faulty
elements.

1   Introduction

A Distributed Computer System (DCS) [1-4] is a set of Elementary Machines [EM]
that are connected by a network to be program-controlled from these EM. Every EM
includes Computing Unit (CU) (a processor with a memory) and a System Device
(SD). A functioning of the SD is controlled  by the  CU and the SD has   input and
output poles connected by links to output and input poles of v neighbor EM. A struc-

ture of the DCS is described by a graph G V Es s s( , ) , Vs is a set of EM and

( 9 9
V V V

˝ 
  is a set of links between EM. For the DCS  a graph G V Pp p p( , ) of

parallel program is determined usually as a set V p  of the program branches (virtual

elementary machines) that communicate with each  other by “point-to-point” principle
by transmission of messages across logical (virtual) channels (one- or two-directed)

from a set E V Vp p p˝ * . In general case numbers (weights) that characterize com-

puting complexities of branches and intensities of communications between  neighbor
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branches are corresponded  to nodes x y V p, ˛   and edges (or arcs) ( , )x y E p˛
accordingly.

     A problem of mapping structure of  the parallel  program  onto structures  of  DCS
is equivalent to the graph isomorphism problem that  is  NP-complete [5,6].  Now
efforts of researchers are directed to search effective heuristics suitable for most cases.
In many cases observed in practice of parallel programming the weights of all nodes
(and all edges) of program graph can be considered equal to each other and can be
neglected .In this case a problem of mapping structure of parallel program onto struc-

ture of DCS has the following form [5]. The graph G V Pp p p( , )  of parallel program

is considered as a set V p  and a function

G V Vp p p: * { , },fi 01

satisfying

* [ \ * \ [
S S
� � � � � �= , * [ [

S
� � � = �

for any x y V p, ˛ .  The equation G x yp( , ) = 1 means that there is an edge  be-

tween nodes  x  and y , that is ( , )x y E p˛ . Analogously the graph

G V Es s s= ( , )  is determined as a set of nodes (elementary machines (EM)) V s   and

a function

G V Vs s s: * { , }.fi 01

     Here  Es  is a set of edges (of links between EM). Suppose that | | | |V V np s= = .

Let’s designate the mapping of parallel program branches to EM by one-to-one func-

tion f V Vm p s: fi .

    The mapping quality can be evaluated by the number of program graph edges coin-

ciding with edges of DCS graph. Let’s call this number as a cardinality | |f m  of map-

ping f m  and define it by the expression [5] (the maximum criterion of the mapping

quality):

| | ( / ) ( , ) * ( ( ) , ( ) ) .
,

f G x y G f x f ym p s m m
x V y Vp p

=
˛ ˛
å1 2          (1)

      The minimum criterion of the mapping quality has the form
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| | ( / ) ( , ) * ( ( ), ( )).
,

f G x y L f x f ym p s m m
x V y Vp p

=
˛ ˛
å1 2                 (2)

Here  L f x f ys m m( ( ) , ( ) )   is equal to the distance between nodes   f xm( )   and

f ym( )   on the graph Gs .

2   Mapping Algorithm

Let’s consider  the  following   approach to the mapping problem [7].   Let   initially

f x xm( ) = .  Let e xp( )  be an environment (a set of neighbors) of a node x on the

graph  Gp
and e xs( )  be its environment on the graph Gs .  For each node x V p˛

we shall test  twin exchanges of all nodes  i  and j  if these nodes are satisfied to the

condition

i e x i e x j e x state jp s s˛ ˇ ˛ =( ) & ( ) & ( ) & ( ) ,0

      where state j( ) ,= 0  if a node j  has not been exchanged in e xs( )  and

state j( ) = 1 otherwise. Exchanges that don’t make worse  the  performance of

mapping fm  will be fixed. This approach is based on assumption about high probability

of situation  when  such exchange increasing the number of nodes i e xp˛ ( ) in the

environment e xs( )  improves (or at least doesn’t make worse) the value  of perform-

ance  criterion | |f m . It is obvious that the number of  the  analyzed  exchanges in one

evaluation of all nodes x V p˛  doesn’t exceed the value v v n n Vp s p, | |= , where vp

and vs  are maximum degrees of nodes of graphs Gp and Gs accordingly. With

v v np s <  this approach provides the reduction of computations with respect to the

well-known Bokhari algorithm (B-algorithm) [5] and with increase of n  the effect of
reduction is also increased. On the base of suggested approach the procedure Search

has been developed for search of local extremum  of  function  | |f m  in the mapping

algorithm (MB-algorithm) that is a modification of the B-algorithm. Besides   the MB-

algorithm includes following modifications . Firstly initial value of | |f m is compared

with E p  and if the equality is carried out then the algorithm is completed. Secondly

check-up of the equality  _ _ _ _I (
P S

=   executed after every completion of  the

Search. These examinations also lead very often to a cutting down of the algorithm
implementation time.
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    The MB-algorithm is presented below for the criterion (1). Here: TASK is the de-

scription of the graph Gp ,  VS is the current mapping  f m , BEST is the best found

mapping f m , card( f ) is the performance criterion of the mapping f , card (TASK)

is the performance of the graph Gp  selfmapping, BEST � VS is the creation of the

copy BEST of the mapping VS, Rand-interchange (VS) is the random exchange of n

node pairs  in the mapping VS, Output(BEST) is the output of the best mapping f m .
Procedure MB;
begin
  done=false; BEST � VS;
   if (card(VS)=card(TASK)) done=true;
     while (done � true)   do
       begin Search(VS,TASK);
         if (card(VS) > card(BEST))
           begin BEST � VS; Rand_exchange(VS) end
         else     done=true;
       end
   Output(BEST)
end.
     The performance of the MB-algorithm has been investigated [7] on the mapping
standard  parallel  program structures  ("line",  "ring",  "mesh") onto regular graphs of
DCS (E2-graph i.e. torus,  optimal  D2-graph i.e. two-measured circulant,  hypercube)
with  a number  of  nodes n varying  from 8 to 256. Results of MB-algorithm tests
show that the cardinality achieved by the algorithm of mapping  graph Gp onto graph
Gs with number of nodes n=|Vp|=|Vs| £  256 is no less than 90% of the number of
nodes in Gp for cases when  Gp  is the "line" or the "ring" and no less than 80%  for
the case when the Gp is the “mesh”. The MB-algorithm reduces  the  time  of mapping
with respect to B-algorithm in two exponents for mapping one-measured structures
("line",  "ring") onto E2-  and  D2-graphs  and  in exponent for mapping two-measured
structures ("mesh") onto hypercube.  For all that the MB-algorithm doesn't make
worse  the performance of the mapping with respect to the B-algorithm.
     In this paper we investigate the MB-algorithm quality for mapping parallel pro-
gram structures onto structures of distributed computer systems (DCS) with faulty
elements. The mapping quality is investigated for different DCS network topologies
(structure types) and for different numbers of faulty processors and links (intercon-
nections).
    Usually the DCS graphs initially are regular (torus, hypercube etc) but during the
DCS functioning the failures in processors and links  can be arised. As a result the
parallel program must be remapped onto the nonregular connected functioning part of
the DCS. The decentralized operating system of the DCS provides the equality of pro-
gram branches count to the DCS functioning processor count, i.e. |Vs|=|Vp| and the
computational load is evenly distributed among functioning processors [ 3,4]. In other
words, the parallel program can be adjusted to a number of processors in the DCS.
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3   Conditions for Mapping Parallel Programs onto DCS with
     Faulty Processors and Links

How many failures can be tolerant in a DCS for mapping parallel program? There are
two types of bounds for the tolerant multiplicity t of failures.
      First, a number of faulty nodes must be no more than (n-1)/2, n=|V|. This bound is
determined by selfdiagnosability condition [2]. In accordance with the bound, selfdi-
agnostics algorithm works correctly only when the nonfaulty part of the system has no
less than half of the nodes number.
      Second, the graph with faulty nodes and edges must be connected. This property is
necessary for communications between branches of the parallel program. The prob-

ability tp of the DCS graph disconnection and the probability 1c tp p= - of the dis-

connection absence were investigated with respect to the number of faulty nodes and
edges. Investigation was realized by Monte Carlo simulation of regular graphs with
faulty nodes and edges and the simulation results are presented below.

       Figs.1-6  show the simulation plots of  pt  versus the percentage of failed nodes

(Figs.1,3,5) and edges (Figs.2,4,6) for a torus (Figs.1,2), a circulant (Figs.3,4) and
hypercube (binary cube) (Figs.5,6) with n=64 nodes.
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 Simulation results show that:

     1)for tori and two-measured circulants 1tp »  for t>n/2, and for hypercubes

1tp »  for t>3n/4;

     2) for tori and two-measured circulants 1cp »  for 0.2t n£  (see Figs.1-4) , and

for hypercubes 1cp »  for 0.3t n£ (see Figs.5,6);

     These results are true both for graphs with faulty nodes and for graphs with faulty
edges. In the second case n is a number of the DCS edges. They show that graph to-
pologies with higher node degree allow the network to sustain a larger number of fail-
ures before disconnection. Thus for  0.2 ( 1) / 2t n n£ < -  all considered topologies

are practically connected and we can apply the above mapping algorithm.

4 Investigation of the Mapping Algorithm

Four types of parallel programming graphs Gp were considered: “line”, “ring”, “mesh”
and “torus”. These graphs with the number of nodes from n=8 to 256 were mapped
onto the DCS structure (torus, two-measured circulant (D2-graph), hypercube) with
faulty nodes or faulty edges.
       The plan of the mapping algorithm investigation is:

       1.Create initial graph  sG  with a given regular topology and a given number of

nodes.
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      2. Define a multiplicity of failures t and generate a set of k distorted DCS graphs

( )sG i , i=1,…,k by means of injection of failures to nodes or to edges of the initial

graph.

      3. Map the program graph pG onto every distorted DCS graph ( )sG i and calcu-

late the mapping quality | |m if  for every mapping .

      4. Calculate average value of relative mapping quality

å
=

=
k

i

m
p

m f
kE

r
1

1

      Results of the mapping algorithm simulation can be distinguished on two groupes:
      1. mapping “line” and “ring”;
      2. mapping “torus” and “mesh”.

Table 1. Minimal values rm(V) / rm (E )  of average mapping qualities  for faulty nodes and   for
faulty edges

                      Gp

Gs

Torus Circulant Hypercube

Line 0.802 / 0.803 0.801 / 0.802 0.868 / 0.867
Ring 0.793 / 0.796 0.797 / 0.790 0.859 / 0.850
Mesh 0.571 / 0.792 0.538 / 0.790 0.633 / 0.613
Torus 0.500 / 0.595 0.495 / 0.468 0.586 / 0.586

     For the first group (Table.1), if the number of faulty nodes  0.2t n<  than the av-
erage mapping quality  is no less than 0.8 when the DCS graph has topology of torus
or circulant  and is no less than 0.86 when the DCS graph has topology of hypercube.
     For the second group, if the number of faulty nodes  0.2t n<  than the average
mapping quality  is no less than 0.46 when the DCS graph has topology of torus or
circulant  and is no less than 0.58 when the DCS graph has topology of hypercube.
     Figs.7-10 show the simulation plots of the rm versus the number n of the DCS
nodes for several values of the percentage of failed nodes (Tables. 2-5).
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Table 2. Mapping quality, “line � torus” mapping

16 36 64 100 144 169 225

0% 1 0.971 0.905 0.909 0.923 0.929 0.938
10% 0.937 0.864 0.828 0.842 0.836 0.843 0.856
20% 0.926 0.839 0.804 0.802 0.813 0.810 0.813
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Fig. 7. Mapping quality, “line � torus” mapping

Table 3. Mapping quality, “mesh � torus” mapping

16 36 64 100 144 196 256

10% 0.865 0.698 0.674 0.639 0.633 0.641 0.628
20% 0.783 0.652 0.626 0.577 0.575 0.566 0.558
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Fig. 8. Mapping quality, “mesh � torus” mapping (rm=1 for 0% percentage of  failed nodes)
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Table 4. Mapping quality, “line � hypercube” mapping

8 16 32 64 128 256
0% 1 1 1 0.968 0.937 0.937

10% 1 0.948 0.902 0.887 0.883 0.895
20% 0.919 0.909 0.880 0.868 0.870 0.878

Fig. 9. Mapping quality, “line � hypercube” mapping

Table 5. Mapping quality, “mesh � hypercube” mapping

8 16 32 64 128 256
0% 1 1 0.923 0.812 0.776 0.771

10% 0.875 0.857 0.794 0.743 0.699 0.665
20% 0.875 0.805 0.742 0.719 0.661 0.633
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Fig. 10. Mapping quality, “mesh � hypercube” mapping
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5   Conclusion

Mapping typical graphs (“line”,”ring”,”mesh”,”torus”) of parallel programs onto
regular graphs (“torus”, “two-measured circulant”, “hypercube”) of distributed com-
puter system (DCS) is considered when the DCS has failures such as faulty processors
(nodes) or faulty links (edges). It is shown by the mapping algorithm simulation that:
     1) one-measured program structures (line and ring) are mapped better than two-
measured structures (mesh and torus);
     2) the one-measured structures mapping is changed  to worse very less (6 – 15%
for 20% faulty elements) than the two-measured structures mapping(15-45%).
      For hypercube the mapping quality values are greater than for torus and two-
measured circulant . The smaller node degree of a program graph and the greater node
degree of a DCS graph the greater the mapping quality. Thus, the one-measured pro-
gram structure’s mappings are more fault-tolerant than two-measured structure’s one
and more preferable for organization of computations in the DCS with faulty elements.

Acknowledgement

This work was supported by the BK21 program (E-0075).

References

1. Korneev, V.V.: Architecture of Computer Systems with Programmable Struc
ture.Novosibirsk, Nauka (1985)(in Russian).

2. Dimitriev, Yu.K.: Selfdiagnostics of modular computer systems. Novosibirsk,
Nauka (1994) (in Russian)

3. Korneev, V.V., Tarkov, M.S.: Operating System of Microcomputer System with
Programmable Structure MICROS, Microprocessornie sredstva i sistemy (Micro-
processor means and systems). 4 (1988) 41-44 (in Russian)

4. Tarkov, M.S.:Parallel Fault Tolerant Image Processing in Transputer System
MICROS-T. Nauchnoe priborostroenie. Vol.5. 3-4 (1995) 74-80 (in Russian)

5. Bokhari, S.H.: On the Mapping Problem, IEEE Trans. Comput., C-30(3), (1981)
207-214

6. Lee, S.-Y., Aggarval, J.K.:A Mapping Strategy for Parallel Processing, IEEE
Trans. Comput., C-36(4), (1987) 433-442

7. Tarkov, M.S.: Mapping Parallel Programs Onto Distributed Robust Computer
Systems. Proceed. of the 15th IMACS World Congress on Scientific Computation,
Modelling and Applied Mathematics, Berlin, August 1997. V.6. Application in
Modelling and Simulation. Proc. Ed. By Achim Sydow. (1997) 365-370


	Mapping Parallel Programs onto Distributed Computer Systems with Faulty Elements
	1 Introduction
	2 Mapping Algorithm
	3 Conditions for Mapping Parallel Programs onto DCS with
	4 Investigation of the Mapping Algorithm
	5 Conclusion
	Acknowledgement
	References


