Solving Nonlinear Differential Equations
by a Neural Network Method

Lucie P. Aarts' and Peter Van der Veer!

! Delft University of Technology, Faculty of Civilengineering and Geosciences,
Section of Civilengineering Informatics,

Stevinweg 1, 2628 CN Delft, The Netherlands
l.aarts@citg.tudelft.nl, p.vdveere@ct.tudelft.nl

Abstract. In this paper we demonstrate a neural network method to solve non-
linear differential equations and its boundary conditions. The idea of our method
is to incorporate knowledge about the differential equation and its boundary
conditions into neural networks and the training sets. Hereby we obtain specifi-
cally structured neural networks. To solve the nonlinear differential equation
and its boundary conditions we have to train all obtained neural networks si-
multaneously. This is realized by applying an evolutionary algorithm.

1 Introduction

In this paper we present a neural network method to solve a nonlinear differential
equation and its boundary conditions. In [1] we have already demonstrated how we
could solve linear differential and linear partial differential equations by our neural
network method. In [2] we showed how to use our neural network method to solve
systems of coupled first order linear differential equations. In this paper we demon-
strate how we incorporate knowledge about the nonlinear differential equation and its
boundary conditions into the structure of the neural networks and the training sets.
Training the obtained neural networks simultaneously now solves the nonlinear differ-
ential equation and its boundary conditions. Since several of the obtained neural net-
works are specifically structured, the training of the networks is accomplished by
applying an evolutionary algorithm. An evolutionary algorithm tries to find the mini-
mum of a given function. Normally one deals with an evolutionary algorithm working
on a single population, i.e. a set of elements of the solution space. We however use an
evolutionary algorithm working on multiple subpopulations to obtain results more
efficiently. At last we graphically illustrate the obtained results of solving the nonlin-
ear differential equation and its boundary conditions by our neural network method.

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 181-189, 2001.
© Springer-Verlag Berlin Heidelberg 2001

182 L.P. Aarts and P. Van der Veer
2 Problem Statement

Many of the general laws of nature, like in physics, chemistry, biology and astronomy,
find their most natural expression in the language of differential equations. Applica-
tions also abound in mathematics itself, especially in geometry, and in engineering,
economics, and many other fields of applied science.

In [10] one derives the following nonlinear differential equation and its boundary
conditions for the description of the problem of finding the shape assumed by a flexi-
ble chain suspended between two points and hanging under its own weight. Further the
y -axis pass through the lowest point of the chain.

2 @
d_i/: 1+ﬂ.ﬂ,
dx ' dx dx

y(0) =1, 2)

dy 3
2 (0)=0.
dx()

Here the linear density of the chain is assumed to be a constant value. In [10] the
analytical solution is derived for system (1), (2) and (3) and is given by

y(x) =%(e" +e”‘). @

In this paper we consider the system (1), (2) and (3) on the interval X € [— 1,2] .

3 Outline of the Method

By knowing the analytical solution of (1), (2) and (3), we may assume that y(x)and

its first two derivatives are continuous mappings. Further we define the logsigmoid
function f as

)
J) =
1+ exp(—x)
By results in [8] we can find such real values of ¢, w,and b, that for a certain

natural number m the following mappings

Solving Nonlinear Differential Equations by a Neural Network Method 183

n (6)
p(x) = a,f(wx+b,),
i=1
do N daf (7)
—(x)=) aw,—(w,x+b,),
dx();,ldx(,)
d’p no L dYf ®)
xX)=) aw, wx+b,),
dxz();’ldf(’)
. . dy oo
respectively approximate y(x),d— and 5~ arbitrarily well. The networks rep-
X X

resented by (6), (7) and (8) have one hidden layer containing 7 neurons and a linear
output layer. Further we define the DE-neural network of system (1), (2) and (3) as the
not fully connected neural network which is constructed as follows. The output of the

network represented by (7) is the input of a layer having the function g(x) = x* as

transfer function. The layer contains one neuron and has no bias. The connection
weight between the network represented by (7) and the layer is 1. The output of the

layer is the input of a layer with the function A(x) = \/; as transfer function. The

layer contains one neuron and has a bias with value 1. The connection weight between
the two layers is 1.

de* |—»
‘1
X
d g h
A o —»
dx | 1 T 1
g(x) = x?, h(x) = /x 1

Fig. 1. The DE-neural network for system (1), (2) and (3)

184 L.P. Aarts and P. Van der Veer

The output of the last layer is subtracted from the output of the network represented by
(8). A sketch of the DE-neural network of system (1), (2) and (3) is given in Fig. 1.
Since the learnability of neural networks to simultaneously approximate a given
function and its unknown derivatives is made plausible in [5], we observe the follow-
ing. Assume that we have found such values of the weights that the networks repre-
sented by (6), (7) and (8) respectively approximate Y(Xx) and its first two derivatives

arbitrarily well on a certain interval. By considering the nonlinear differential equation
given by (1) it then follows that the DE-neural network must have a number arbitrarily
close to zero as output for any input of the interval. In [6] it is already stated that any
network suitably trained to approximate a mapping satisfying some nonlinear partial
differential equations will have an output function that itself approximately satisfies
the partial differential equations by virtue of its approximation of the mapping’s de-
rivatives. Further the network represented by (6) must have for input x = 0 an output
arbitrarily close to one and the network represented by (7) must give for the same
input an output arbitrarily close to zero.

The idea of our neural network method is based on the observation that if we want
to fulfil a system like (1), (2) and (3) the DE-neural network should have zero as out-

put for any input of the considered interval [— 1,2]. Therefore we train the DE-neural

network to have zero as output for any input of a training set with inputs X € [— 1,2].

Further we have the following restrictions on the values of the weights. The neural
network represented by (6) must be trained to have one as output for input X =0 and
for the same input the neural network represented by (7) must be trained to have zero
as output. If the training of the three networks has well succeeded the mapping ¢ and

its first two derivatives should respectively approximate y and its first two derivatives.

Note that we still have to choose the number of neurons in the hidden layers of the
networks represented by (6), (7) and (8), i.e. the natural number m by trial and error.

The three neural networks have to be trained simultaneously as a consequence of
their inter-relationships. It is a specific point of attention how to adjust the values of
the weights of the DE-neural network. The weights of the DE-neural network are
highly correlated. In [11] it is stated that an evolutionary algorithm makes it easier to
generate neural networks with some special characteristics. Therefore we use an evo-
lutionary algorithm to adjust simultaneously the weights of the three neural networks.
Before we describe how we manage this, we give a short outline of what an evolution-
ary algorithm is.

4 Evolutionary Algorithms with Multiple Subpopulations

Evolutionary algorithms work on a set of elements of the solution space of the func-
tion we would like to minimize. The set of elements is called a population and the
elements of the set are called individuals. The main idea of evolutionary algorithms is
that they explore all regions of the solution space and exploit promising areas through
applying recombination, mutation, selection and reinsertion operations to the individu-

Solving Nonlinear Differential Equations by a Neural Network Method 185

als of a population. In this way one hopefully finds the minimum of the given func-
tion. Every time all procedures are applied to a population, a new generation is cre-
ated. Normally one works with a single population. In [9] Pohlheim however states
that results are more efficiently obtained when we are working with multiple sub-
populations instead of just a single population. Every subpopulation evolves over a
few generations isolated (like with a single population evolutionary algorithm) before
one or more individuals are exchanged between the subpopulations. To apply an evo-

lutionary algorithm in our case, we define €, €, and e, as the means of the sum-of-

squares error on the training sets of respectively the DE-neural network, the network
represented by (6) and the network given by (7). Here we mean by the mean of the
sum-of-squares error on the training set of a certain network, that the square of the
difference between the target and the output of the network is summed for all inputs
and that this sum is divided by the number of inputs. To simultaneously train the DE-

neural network and the networks represented by ¢ and d_(p we minimize the expres-
X

sion
e +e,+e;, ®)

by using an evolutionary algorithm. Here equation (9) is a function of the variables
a,,w, and b, .

5 Results

In this section we show the results of applying our neural network method to the sys-
tem (1), (2) and (3). Some practical aspects of training neural networks that are well
known in literature also hold for our method. In e.g. [3] and [7], it is stated that if we
want to approximate an arbitrary mapping with a neural network represented by (6), it
is advantageous for the training of the neural networks to scale the inputs and targets
so that they fall within a specified range. In this way we can impose fixed limits on the
values of the weights. This prevents that we get stuck too far away from a good opti-
mum during the training process. By training the networks with scaled data all weights
can remain in small predictable ranges. In [2] more can be found about scaling the
variable where the unknown of the differential equation depend on and scaling the
function values of the unknown of the differential equation, to improve the training
process of the neural networks.

To make sure that in our case the weights of the networks can remain in small pre-
dictable ranges, we scale the function values of the unknown of the nonlinear differ-
ential equation. Since we normally do not know much about the function values of the
unknown we have to guess a good scaling of the function values of the unknown. For

solving the system (1), (2) and (3) on the considered interval [— 1,2] we decide to
scale y in the following way:

186 L.P. Aarts and P. Van der Veer

Yy
Yu =5

2
Hereby the system (1), (2) and (3) becomes

dx? dx dx
1
yM(0)=5,
d}’M
—2.(0)=0.
Iy 0)

deyM :\/14_ dy_Mdy_M

)

10)

1)

2)

3)

We now solve the system (11), (12) and (13) by applying the neural network
method described in Sect. 3. A sketch of the DE-neural network for system (11), (12)

and (13) is given in Fig. 2.

de* |
X
d g h
y 42— 8 |—»
dx | 1 4

g(x) = x*, h(x) =~/x

Fig. 2. The DE-neural network for system (11), (12) and (13)

We implemented the neural networks by using the Neural Network Toolbox of Matlab
5.3 ([4]). Further we used the evolutionary algorithm implemented in the GEATbx
toolbox ([9]). When we work with the evolutionary algorithms implemented in the

GEATDbx toolbox, the values of the unknown variables ¢, w, and bi have to fall

within a specified range. By experiments we noticed that we obtain good results if we
restrict the values of the variables @, w, and b, to the interval [— 5,5]. The DE-

neural network is trained by a training set with inputs X € {— 1,—0.9,..,1.9,2} and

Solving Nonlinear Differential Equations by a Neural Network Method 187

the corresponding targets of all inputs are zero. Further we have to train the neural
network represented by ¢ to have one as output for input X =0 and for the same

d
input the neural network represented by d—(p must have zero as output. The number
X

of neurons in the hidden layer of the neural networks represented by (6), (7) and (8) is

taken equal to 6. Therefore the number of variables which have to be adapted is equal

to 18. After running the chosen evolutionary algorithm for 1500 generations with 160

individuals dividled over 8 subpopulations we take the set

Xe {— 1,-0.95,0.9,..,1 .95,2} as input to compute the output of the neural networks
2

d d
represented by 2¢, 2d—¢ and 2 y (zp . We also compute the analytical solution of
x x

(1), (2) and (3) and its first two derivatives for x € {— 1,—0.95,0.9,..,1.95,2}. By
comparing the results we conclude that the approximation of y and its first two de-
rivatives by respectively 2¢ and its first two derivatives are very good. Both the

neural network method solution of (1), (2) and (3) and its first two derivatives as the
analytical solution of (1), (2) and (3) and its first two derivatives are graphically illus-
trated in Fig. 3 and Fig. 4. The errors between the neural network method solution of
(1), (2) and (3) and its first two derivatives on the one hand and the analytical solution
of (1), (2) and (3) and its first two derivatives on the other hand are graphically illus-
trated in Fig. 5. The difference between the target of the DE-neural network of the
system (1), (2) and (3), ie. =zero for any input Xx of the set

{— 1,—0.95,0.9,..,1.95,2} and its actual output is also illustrated in Fig. 5. Consid-

ering Fig. 5, we can conclude that the approximations of the solution of (1), (2) and (3)
and its first derivative are somewhat better than the approximation of the second de-
rivative of the solution of (1), (2) and (3). Since we are however in most numerical
solving methods for differential equations interested in the approximation of just the
solution itself, our results are really satisfying.

6 Concluding Remarks

In this paper we used our neural network method to solve a system consisting of a
nonlinear differential equation and its two boundary conditions. The obtained results
are very promising and the concept of the method appears to be feasible. In further
research more attention will be paid to practical aspects like the choice of the evolu-
tionary algorithm that is used to train the networks simultaneously. We will also do
more extensive experiments on scaling issues in practical situations, especially the
scaling of the variable where the unknown of the differential equation depends on.

188

L.P. Aarts and P. Van der Veer

References

10.

11.

Aarts, L.P., Van der Veer, P.: Neural Network Method for Solving Partial Differential
Equations. Accepted for publication in Neural Processing Letters (200?)

Aarts, L.P., Van der Veer, P.: Solving Systems of First Order Linear Differential Equations
by a Neural Network Method. Submitted for publication December 2000

Bishop, C.M.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1995)
Demuth, H., Beale, M.: Neural Networks Toolbox For Use with Matlab, User’s Guide
Version 3. The Math Works, Inc., Natick Ma (1998)

Gallant, R.A., White H.: On Learning the Derivatives of an Unknown Mapping With Mul-
tilayer Feedforward Networks. Neural Networks 5 (1992) 129-138

Hornik, K., Stinchcombe, M., White, H.: Universal Approximation of an Unknown Map-
ping and Its Derivatives Using Multilayer Feedforward Networks. Neural Networks 3
(1990) 551-560

Masters, T.: Practical Neural Networks Recipes in C++. Academic Press, Inc. San Diego
(1993)

Li, X.: Simultaneous approximations of multivariate functions and their derivatives by
neural networks with one hidden layer. Neurocomputing 12 (1996), 327-343

Pohlheim, H., Documentation for Genetic and Evolutionary Algorithm Toolbox for use
with Matlab (GEATbx): version 1.92, more information on http://www.geatbx.com| (1999)
Simmons, G.F.: Differential equations with applications and historical notes. 2nd ed.
McGraw-Hill, Inc., New York (1991)

Yao, X.: Evolving Artificial Neural Networks. Proceedings of the IEEE 87(9) (1999)
1423-1447

y(x)
4 T
o]
3.5¢F o
o=neural network o]
*=analytical
3l
>
A 2.5

0.5 1 1.5 2
> X

Fig.3. The solution of system (1), (2) and (3)

http://www.geatbx.com/

-> error

Solving Nonlinear Differential Equations by a Neural Network Method

dy/dx(x)

o=neural network

3 2 *=analytical h
=
©
Yo |
2
-1 -0.5 0 0.5 1 1.5 2
=> X
4 d2y/dx3(x)

o=neural network

*=analytical

Fig.4. The first two derivatives of the solution of system (1), (2) and (3)

analytical - nn y(x) analytical - nn dy/dx(x)
0

0.01]

-0.02

-> error

-0.03

-0.04
-1 0 1

N

output DE-neural nétwork (1), (2), (3)
0.1

0.05

-> output

o
=

-0.15 -0.1 T
-1 0 1 2 -1 0 1 2

189

Fig. 5. The errors between the analytical solutions of (1), (2) and (3) and its first two derivatives
on the one hand and the neural network method solution of (1), (2) and (3) and its first two
derivatives on the other hand. Also the output of the DE-neural network of (1), (2) and (3) is

illustrated

	Solving Nonlinear Differential Equations by a Neural Network Method
	1 Introduction
	2 Problem Statement
	3 Outline of the Method
	4 Evolutionary Algorithms with Multiple Subpopulations
	5 Results
	Concluding Remarks
	References

