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Abstract. Fuzzy Inference Systems (FISs) and Artificial Neural Networks
(ANNs), as two branches of Soft Computing Systems (SCSs) that pose a
human-like inference and adaptation ability, have already proved their
usefulness and have been found valuable for many applications [1],[2]. They
share a common framework of trying to mimic the human way of thinking and
provide an effective promising means of capturing the approximate, inexact
nature of the real world process. In this paper we propose an Adaptive Neuro-
Fuzzy Logic Control approach (ANFLC) based on the neural network learning
capability and the fuzzy logic modeling ability. The approach combines the
merits of the both systems, which can handle quantitative (numerical) and
qualitative (linguistic) knowledge. The development of this system will be
carried out in two phases: The first phase involves training a multi-layered
Neuro-Emulator network (NE) for the forward dynamics of the plant to be
controlled; the second phase involves on-line learning of the Neuro-Fuzzy
Logic Controller (NFLC). Extensive simulation studies of nonlinear dynamic
systems are carreid out to illustrate the effectiveness and applicability of the
proposed scheme.

1 Introduction

In recent years, Fuzzy Inference Systems (FISs) and Artificial Neural Networks
(ANNs) have attracted considerable attention as candidates for novel computational
systems because of the variety of the advantages that they offer over conventional
computational systems [1]-[5]. Unlike other classical control methods, Fuzzy Logic
Control (FLC) and ANNs are more model free controllers, i.e. they do not require
exact mathematical model of the controlled system. Moreover, they are becoming
well-recognized tools of designing identifiers and controllers capable of perceiving
the operating environment and imitating a human operator with high performance.

FLC has the strengths of linguistic control, parallelism, relaxation, flexibility, and
robustness. But there has been no systematic approach in implementing the adaptive
fuzzy control system. For example, the shape and location of membership function for
each fuzzy variable must be obtained by trail-error or heuristic approach. Also, when
an expert cannot easily express his knowledge or experience with the linguistic form
of (If-Then) control rule, it is not easy to construct an efficient control rule base [6].

ANNs have the characteristics of high parallelism, fault-tolerance, and adaptive
and learning abilities. But there exist some problems in the neural control; firstly, it is
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not easy to decide the optimal number of layers and neurons; secondly, the learning
algorithm of the neural network has slow convergence speed and thirdly, the neural
networks take numerical (quantitative) computations rather than symbolic or linguistic
(qualitative) computations [7].

In order to overcome such problems, there have been considerable research efforts
to integrate FLC and ANNs for developing what is known as neuro-fuzzy control
systems [5]-[10]. The fusion of the two approaches, which can enlarge their
individual strengths and overcome their drawbacks, will produce a powerful
representation flexibility and numerical processing capability [11]-[13], [14]-[17].

In this paper we present another approach of an adaptive neuro-fuzzy logic control
scheme (ANFLC) using the hybrid combination of fuzzy logic and neural networks.
The proposed control scheme consists of a neuro-fuzzy logic controller (NFLC) and a
neuro-emulator (NE). In the NFLC, the antecedent and consequent parts of the fuzzy
rules are constructed using a multi-layered neural network with clustering method.
The NFLC is trained to refine its parameters adaptively using error backpropagation
learning algorithm (EBP). After constructing the adaptive neuro-fuzzy control system
by NFLC and NE, the effectiveness of the proposed scheme will be demonstrated and
evaluated by different nonlinear dynamic cases.

Fig. 1.  Topology of the Neuro-Fuzzy model

2 Neuro-fuzzy Logic Controller

Both the FLC and ANNs have been employed together to design a neuro-fuzzy logic
controller (NFLC). A fuzzy system with learning ability has been constructed and is
trained directly from the input-output data of the plant. Since the NFLC has the
property of learning; membership functions and fuzzy rules of the controller can be
tuned automatically by the learning algorithm [6],[13],[15]. Learning is based on the
performance error, which is evaluated by comparing the process output with the
desired or required output.
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The NFLC presented here is based on a self-learning FLC. The learning method is
basically a special form of the error backpropagation (EPB), which is used for
training ANNs. To train the controller, the EBP method is employed to propagate the
plant output error signal through different stages in time.

The NFLC architecture is composed of five layers as shown in Fig. 1, where the
layers are functionally described as: the input layer (L1), the fuzzy partition layer (L2),
the firing strength layer (L3), the normalized firing strength layer (L4) and the output
layer (L5). The first four layers perform the fuzzy partition of the input space and
construct the antecedent part while the last layer together with the weights and the
results obtained by the partition carry out the implementation task of control and
learning. This structure can update membership function and rule base parameters
according to the gradient descent update procedure.

2.1 Fuzzy Elements of the Neuro-fuzzy Logic Controller

Since a Multi-Input-Multi-Output (MIMO) system can always be separated into group
of a Multi-Input-Single-Output (MISO) systems, we only consider a multi-input (error
and change in error)-single output (control action) neuro-fuzzy logic controller here.

Fig.2 shows the basic structure of a traditional FLC consisting of four major
blocks [1],[12],[18]. These blocks can be described as:  The fuzzification interface is a
mapping from the observed non-fuzzy input space U ± § n to the fuzzy set defined in
U. The fuzzy set defined in U  is characterized by a membership function mF : U �
[0,1], and is labelled by a linguistic term F such as “big” and “small”. The fuzzy rule
base is a set of the neuro-fuzzy controller rules in the form:
Rj : If (x1(t) is A1j) and (x2(t) is A2j) Then (u(t) is Bj),  For  j = 1, . . ., N,  and,  t = 1,2,…
Where N is the number of rules, x1(t) and x2(t) are the input variables to the NFLC at
time t given as [15]:
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is the error between the reference signal and the actual system output, and
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is the change in error. DT is the sampling period, ijA  and jB  are linguistic terms
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Throughout this study, the ijA  uses the Gaussian shaped membership function,

defined by [10],[17]:
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The fuzzy inference machine is a decision making logic which employs fuzzy rules
from the fuzzy rule base to determine the fuzzy outputs corresponding to its fuzzified
inputs. Using the centroid defuzzification method, the defuzzification interface
determines the non-fuzzy output of the neuro-fuzzy controller in the form [3]:
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In the previous equation, ix  is the input of node i, ijA is linguistic label associated

with this node, ijijc s  and  are adiustable real valued parameters representing the

centre and width of the the Gaussian-shaped function; jy  is the point in the output

space at which 
jBm  achieve its maximum.

Fig. 2. General Structure of Fuzzy Systems

2.2 Neuro-emulator Model

In this paper, we consider the dynamic system goverened by the following
relationship [2],[4]:

( ) )}(),...,(),(),...,({ uy ntutuntytyfty ---= 1 (5)

where, ( )ty and ( )tu  are the system output and input repectively; yn , un  are the

corresponding lags in the output and input, )(•f is a nonlinear function. The task is to

approximate and generalize )(•f using the multi-layer neuro-emulator with,
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We may formulate the problem using the multi-layer neuro-emulator with the input-
output response
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1,…,n2;  n1 is the number of nodes in the input layer and n2 is the number nodes in the
hidden layer. Furthermore, g(.) is the sigmoid activation function described as [4]:

))(exp(
)(

•-+
=•

1

1
g (10)

)(t  ow(t)y
n

j
j

E
jkE å

=
=

2

1
(11)

where, E
jkw  are the output-hidden node weights. The error function eE(t) utilized

during the learning period can be defined as
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In order to minimize the above error function, the weight variations E
ijwD and E
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where, )(•¢g denotes the activation function derivation. After the NE has been trained

to emulate the plant exactly, the plant output )(ty p  is replaced with the NE output

)(tyE . Then the error signal cd of the NFLC can be obtained as follows:
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Thus the performance error at the output of the NFLC can be obtained as [2],[14]:
E
jk

j

E
j

c wå ¢= dd (21)

where, the superscript c stands for the neuro-fuzzy controller.

3 Adaptive Neuro-fuzzy Logic Control System

When there exist some variations in the internal or external environments of the
controlled plant, it will be required for the controller to possess the adaptive ability to
deal with such changes. Thus, in this section, an adaptive neuro-fuzzy logic control
system (ANFLC) will be developed by using the NFLC described earlier in section  2.
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But, when applying the previous NFLC, there are some difficulties in obtaining the
performance error signal. To overcome this problem we use the neuro-emulator (NE)
presented in the previous section, which can emulate the plant dynamics and
backpropagate, the errors between the actual and desired outputs through the NE. Fig.
3 shows the proposed scheme constructed by the two input-single output NFLC and
the NE, where k1,  k2 and k3 are the scaling gains for x1, x2 and u respectively.

Fig. 3.  The Proposed Adaptive Neuro-fuzzy Logic Controller Scheme

3.1   Learning Mechanism

At each time step we adjust the parameters of the NE before updating the controller.
For this purpose, the EBP training algorithm is used to minimize the performance
error ep  as follows:
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From equation (4), we train jy as follows [6],[9]:
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where, h is the learning rate and  a  is the constant momentum term. Using the chain
rule, we have:
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Thus the training algorithm for jy
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In order to train cij  in (3) and (4), we use
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Again, using the chain rule, we have
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and the training algorithm for cij  is
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By using the same above methods, we train sij  in (3) and (4) as:
)()()( ttt ijijij sss D+-= 1 (30)

Thus the training algorithm for sij  is
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4 Simulations

In this work, the proposed model is examined using two different applications. Firstly,
the well known example of a nonlinear dynamic system given in [6],[19] was used to
test for the predicted plant output. This is governed by the following difference
equation:

;)]([)()()(       1          1 21 tuftyatyaty +-+=+
The nonlinear function has the form:

;)sin(.)sin(.)sin(.)(    5 10   3 30   60  uuuuf ppp ++=  In order to predict the plant

outputs, the following difference equation was used:

;)]([ˆ)()()(ˆ       1          1 21 tuftyatyaky +-+=+
where a1 = 0.3 and  a2 = 0.6. For the prediction stage we select

 010    ,.=h 21     3    21 == nn , , and 70   .=a . The parameters wij and wkj are initialized

randomly and uniformly distributed over [-0.5, 0.5]. Training data of 500 samples are
generated from the plant model and used to train wij and wkj in order to minimize the
performance error at each time interval. Fig.4(a) shows that the model is
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approximated and converged to the plant output after only a few iterations. For the
control stage, after the learning process is finished, the model is tested utilizing the
same intilized parameters and the trained weights were being used to train NFLC in
(25), (29) and (31) using (21). Fig.4(b) shows the improved results obtained using the
combined scheme. Moreover,  the adaptive capabilities and generalization abilities of
the proposed scheme are further investigated by changing the input functions to:

))(sin(.))((.)( tutucuf   250  os 30  +=  for 325250 ££ t and ))(sin(.)( tuuf   450  = for

500325 £< t , where )sin()( 1002     ttu p= , the results are also shown in Fig. 4(b).

the ANFLC model has a good match with the actual model with Ep = 0.02638,
obviously, the proposed scheme can commendably identify the plant and assured its
tracking performance.

Secondly, for further invetigations, the scheme was tested on a highly nonlinear
system used in [20]:
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with the desired input sequence signal chosen as  50  20 )]sin()[sin( tt + .

After extensive testing and simulations, the ANFLC model proved a good
performance in forecasting the output of the complex-dynamic plant, it has a good
match with the actual model where the performance error minimized from Ep  = 0.355
to Ep = 0.00138, The results of the prediction and control stages of this nonlinear
system are presented in Fig. 5(a) and (b), respectively. Comparable performance to the
first plant were obtained.

Fig. 4.  Actual and Desired Outputs for 1st model: (a) For Prediction Stage:  Í  Ep  = 0.2310;
(b) For Control Stage:  Í  Ep = 2.638e-02
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Fig. 5.  Actual and Desired Outputs for 2nd model: (a) For Prediction Stage:  Í  Ep  = 0.355;
(b) For Control Stage:  Í  Ep = 1.38e-03

5 Conclusions

A flexible, adaptive neuro-fuzzy controller scheme (ANFLC) using the integration of
FLC and ANNs has been proposed in this paper. The main features of the proposed
control is that it does not require a reference model and it can be used to identify the
unknown dynamics of the plant. The membership functions in the antecedent part and
the real numbers in the consequent part of the NFLC are optimized by this method.
The main advantages of the proposed model over FLC & ANNs are:
� A neural net mapping, of “Black Box” type, which is difficult to interpreted , is

avoided.
� The tuning problem of fuzzy controllers is eliminated.
Two nonlinear examples are treated to demonstrate the potential applicability and
usefulness of this approach in nonlinear dynamic processes.
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