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Abstract. We present a kind of fuzzy reasoning, dependent on a mea-
sure of fulfilment of the antecedent clause, that captures all the expres-
siveness of the traditional approximate reasoning methodology based on
the Compositional Rule of Inference (CRI) and at the same time rules
out a good deal of its inherent complexity. We also argue why this ap-
proach offers a more genuine solution to the implementation of analogical
reasoning than the classically proposed similarity measures.

1 Introduction and Preliminaries

Reasoning with imprecise information expressed as fuzzy sets has received an
enormous amount of attention over the last 30 years. More specifically, re-
searchers have undertaken various attempts to model the following reasoning
scheme (an extension of the modus ponens logical deduction rule), known as
Generalized Modus Ponens (GMP):

IF X is A THEN Y is B (1)
X is A′ (2)

Y is B′ (3)

where X and Y are assumed to be variables taking values in the respective
universes U and V ; furthermore A, A′ ∈ F(U) and B, B′ ∈ F(V )1.

Zadeh suggested to model the if–then rule (1) as a fuzzy relation R (a fuzzy
set on U × V ) and to apply the Compositional Rule of Inference (CRI) to yield
an inference about Y . The CRI is the following inference pattern:

X and Y are R
X is A′

Y is R ◦T A′

where ◦T represents the fuzzy composition of R and A′ by the t–norm2 T , i. e. for
every v ∈ V we have:
1 By F(U) we denote all fuzzy sets in a universe U .
2 A t–norm is any symmetric, associative, increasing [0, 1] × [0, 1] → [0, 1] mapping T

satisfying T (1, x) = x for every x ∈ [0, 1]

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 221–230, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



222 C. Cornelis and E.E. Kerre

B′(v) = sup
u∈U

T (A′(u), R(u, v)) . (1)

We will refer to the above approach as CRI–GMP, i.e. an implementation of
GMP by CRI.

It is obvious that in order for CRI–GMP inference to be reasonable, R and T
can not be just any combination of a fuzzy relation and a t–norm. One important
way of determining the soundness of an inference strategy is to check whether
it complies with certain desirable properties of inference in classical logic. For
example, we might impose the following (non-exhaustive) list of criteria:

A.1 B ⊆ B′ (nothing better than B can be inferred)
A.2 A′

1 ⊆ A′
2 ⇒ B′

1 ⊆ B′
2 (monotonicity)

A.3 A′ = A ⇒ B′ = B (compatibility with modus ponens)
A.4 A′ ⊆ A ⇒ B′ = B (fulfilment of A implies fulfilment of B)

The first three are all standard in the approximate reasoning literature (see
e.g. [1] [6]); we have added the fourth3 as a straightforward extension of a
commonsense principle that stems from the following intuition: the antecedent
of a rule represents a restriction enforced on a variable, and the fulfilment of
this restriction (this happens whenever A′ ⊆ A) is a sufficient condition for the
fulfilment of the consequent. This is exemplified by the crisp rule ”Any Belgian
older than 18 is entitled to get his driving licence”. To conclude that a person
may apply for a licence, it suffices to know that his age is restricted to belong
to a subset of [18, +∞[.

Noticing the link with classical logic, authors have proposed various fuzzifi-
cations of the implication operator to model R. A very general definition of a
so-called implicator is the following:

Definition 1.1. (Implicator) Any [0, 1]2 → [0, 1]–operator I of which the first
and second partial mappings are decreasing, respectively increasing, and so that
I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0 is called an implicator.

Table 1 lists some common implicators. After choosing an implicator I, we
put R(u, v) = I(A(u), B(v)) for all (u, v) ∈ U × V .

The suitability of a given (T, I) pair to implement the CRI–GMP can then
be evaluated with respect to the listed criteria; extensive studies exist on this
issue (see e.g. [6]).

One particularly unfortunate aspect of the CRI is its high complexity. In
general, for finite universes U and V so that |U | = m and |V | = n, an inference
requires O(mn) operations. Mainly for this reason, researchers have explored
3 Strictly speaking, A.4 is superfluous, as it is a direct consequence of A.1, A.2 and

A.3 combined. We explicitly mention it here because of its intuitive logical appeal.
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Table 1. Implicators on the unit interval ((x, y) ∈ [0, 1]2)

Symbol Name Definition
Im Zadeh Im(x, y) = max(1 − x, min(x, y))
Ia  Lukasiewicz Ia(x, y) = min(1, 1 − x + y)

Ig Gödel Ig(x, y) =

{
1 if x ≤ y
y otherwise

Ib Kleene–Dienes Ib(x, y) = max(1 − x, y)

I∆ Goguen I∆(x, y) =

{
1 if x ≤ y
y
x

otherwise

other ways of performing fuzzy inference while preserving its useful characteris-
tics. In the next sections, we will propose an alternative based on a fuzzification
of crisp inclusion, and argue why it is better than the existing methods.

2 Inclusion-Based Approach

From the criteria listed in the introduction, it is clear that when the observation
A′ of X is a subset of A, the restriction on Y should be exactly B by A.4. On
the other hand, as A′ moves away from (“is less included in”, “less fulfills”) A,
by A.1 the imposed restriction on Y can only get weaker, meaning that we will
be able to infer less and less information. Bearing in mind the close relationship
between fulfilment and inclusion, we might capture this behaviour provided we
can somehow measure the degree of inclusion of A′ into A.

Indeed, if we have such a measure (say Inc(A′, A)) at our disposal, we can use
it to transform the consequent fuzzy set B into an appropriate B′. Schematically,
this amounts to the following:

IF X is A THEN Y is B
X is A′

Y is f(Inc(A, A′), B)

Good candidates for the (f, Inc) pair will preferably be such that A.1 through
A.4 hold with as little extra conditions added as possible. In addition, we would
like to have Inc(B′, B) = Inc(A′, A), in order that a kind of symmetry between
the fulfilment of B′ by B and that of A′ by A is respected. In this section and
the next, we will consider each of these problems in turn.

2.1 Fuzzification of Set Inclusion

As has been done for just about every aspect of classical set theory and binary
logic, several authors have introduced frameworks for extending the subsethood
notion to fuzzy sets. For a long time Zadeh’s definition of inclusion, which reads
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A ⊆ B ⇐⇒ (∀u ∈ U)(A(u) ≤ B(u)) , (2)

remained unquestioned by the fuzzy community. Bandler and Kohout were
among the first to contest this naive view, terming it ”an unconscious step back-
ward in the realm of dichotomy”. They commented on the relationship between
implication and inclusion, arguing that in classical set theory A is a subset of B
(A, B defined in a universe U) if and only if

(∀u ∈ U)(u ∈ A ⇒ u ∈ B) (3)

For each element u, we check whether u ∈ A. If so, then u must also be in B.
Otherwise, we enforce no constraint on the membership of u to B. Bandler and
Kohout suggested the following fuzzy extension of this mathematical principle
(I being an implicator):

IncI(A, B) = inf
u∈U

I(A(u), B(u)) . (4)

As there are various implicators with varying suitability, we also have the
choice between a multitude of inclusion operators which have or have not certain
desired properties. We have adapted a list of selected properties taken from [10]:

I.1 A ⊆ B ⇐⇒ IncI(A, B) = 1
I.2 (∃u ∈ U)(A(u) = 1 and B(v) = 0) ⇐⇒ IncI(A, B) = 0
I.3 B ⊆ C ⇒ IncI(C, A) ≤ IncI(B, A)
I.4 B ⊆ C ⇒ IncI(A, B) ≤ IncI(A, C)
I.5 IncI(A, B) = IncI(coB, coA)
I.6 IncI(B ∪ C, A) = min(IncI(B, A), IncI(C, A))
I.7 IncI(A, B ∩ C) = min(IncI(A, B), IncI(A, C))
I.8 IncI(A, C) ≥ min(IncI(A, B), IncI(B, C))

Criterion I.2 might at first glance seem harsh (e.g. Wilmott [12] and Young [13]
preferred to leave it out in favour of more compensating operators), but as
Sinha and Dougherty [8] proved, it is indispensible if we want IncI to be a
faithful extension of the classical inclusion, that is, IncI(A, B) ∈ {0, 1} if A and
B are crisp sets.

Regarding these conditions we may prove the following theorem: [10]

Theorem 2.1. (Properties of IncI)

1. IncI always satisfies I.3, I.4, I.6, I.7 and the sufficient part of I.2
2. If I satisfies (∀(x, y) ∈ [0, 1]2)(x ≤ y ⇐⇒ I(x, y) = 1), then IncI satisfies

I.1
3. If I satisfies (∀(x, y) ∈ [0, 1]2)(I(x, y) = I(1 − y, 1 − x)), then IncI satisfies

I.5
4. If I is transitive, then IncI satisfies I.8
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It turns out that we can test IncI for suitability by checking just the discrimi-
nating conditions I.1, (the necessary part of) I.2, I.5 and I.8. For instance, IncIa

satisfies all conditions (including the necessary part of I.2 provided the universe
is finite) [10] [11], while IncIb

does not since the Kleene–Dienes implicator is
neither contrapositive nor transitive.

2.2 Modification of the Consequent

After evaluating α = Inc(A′, A) by a chosen inclusion measure, we proceed
by modifying B into a suitable output B′, i.e. B′(v) = f(α, B)(v) for all v in
V . To comply with condition A.1, it is clear that f(α, B)(v) ≥ B(v). On the
other hand, assuming Inc satisfies the monotonicity condition I.4, f ought to be
increasing w.r.t. its first argument to fulfil A.2. Lastly, to have A.3 and A.4 it is
mandatory that f(1, B) = B, whatever B ∈ F(V ).

The need for modification mappings also arises in similarity–based reasoning,
where instead α will result from a similarity measurement, so we can “borrow”,
so to speak, some of the work that has been done in that field. For instance,
Türkşen and Zhong [9] use the following forms, for all v ∈ V :

f1(α, B)(v) =

{
min

(
1, B(v)

α

)
if α > 0

1 otherwise
f2(α, B)(v) = αB(v)

f2 drops out immediately because it violates A.1. f1 on the other hand does
obey our postulates, and so does the following mapping:

f3(α, B)(v) = B(v)α

for all v ∈ V . Another alternative, adopted from Bouchon–Meunier and
Valverde [4], introduces a level of uncertainty proportional to 1 − α, thus mak-
ing inference results easy to interpret: the higher this value gets, the more the
original B is “flooded” by letting the minimal membership grade in B′ for every
v in V become at least 1 − α:

f4(α, B)(v) = max(1 − α, B(v))

We thus observe that several modification mappings serve our cause; deciding
which one to choose depends largely on the application at hand. Nevertheless, in
a situation where we would like the inference result to be in accordance somehow
with the output of a given CRI–GMP system, one mapping might be considered
more eligible than the next one. This will be clarified in the next section.

3 Link with the Compositional Rule of Inference

In the previous sections we showed how inclusion could be related to implication.
It is not surprising, then, to discover that the behaviour of the CRI–GMP based
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on particular t–norm/implicator pairs can be linked to our inclusion approach. In
fact, it can serve as a benchmark for testing the quality as well as the soundness
of our proposed inference system.

In particular, we may show that for a residuated4 implicator generated by a
continuous t–norm T , the following theorem holds:

Theorem 3.1. Let T be a continuous t–norm. If B′ represents the result ob-
tained with CRI–GMP based on the (T, IT ) pair, i.e. for all v ∈ V

B′(v) = sup
u∈U

T (A′(u), IT (A(u), B(v))),

then

IncIT
(B′, B) ≥ IncIT

(A′, A)

Additionally, if (∀α ∈ [0, 1])(∃v ∈ V )(B(v) = α), then

IncIT
(B′, B) = IncIT

(A′, A)

Proof. This proof is based on properties of residuated implicators generated by
continuous t–norms as listed by Klir and Yuan: [7]

I IT

(
sup
j∈J

aj , b

)
= inf

j∈J
IT (aj , b)

II IT (T (a, b), d) = IT (a, IT (b, d))
III IT (IT (a, b), b) ≥ a
IV T (a, b) ≤ d ⇐⇒ IT (a, d) ≥ b

where J is an arbitrary index set, (aj)j∈J a family in [0, 1], a, b, d ∈ [0, 1].

IncIT
(B′, B) = inf

v∈V
IT (B′(v), B(v))

= inf
v∈V

IT

(
sup
u∈U

T (A′(u), IT (A(u), B(v))), B(v)
)

= inf
v∈V

inf
u∈U

IT (T (A′(u), IT (A(u), B(v))), B(v)) (Property I)

= inf
v∈V

inf
u∈U

IT (A′(u), IT (IT (A(u), B(v)), B(v))) (Property II)

≥ inf
v∈V

inf
u∈U

IT (A′(u), A(u)) (Property III)

= IncIT
(A′, A)

In the one but last step of this proof, if we can guarantee that there exists a
v ∈ V so that B(v) = A(u), then for this value the infimum over all v ∈ V is
reached (considering that IT (IT (A(u), A(u)), A(u)) = IT (1, A(u)) = A(u) and
that the second partial mapping of IT is increasing).

ut
4 Any t–norm T generates a so–called residuated implicator IT by the formula

IT (x, y) = sup{γ|γ ∈ [0, 1] and T (x, γ) ≤ y} [10]
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Corollary 3.1. For every v ∈ V , the inference result B′(v) obtained with CRI–
GMP based on the (T, IT ) pair, where T is a continuous t–norm, is bounded
above by the expression IT (IncIT

(A′, A), B(v)).

Proof. Suppose IncIT
(A′, A) = α. From theorem 3.1 we conclude that

B′ ∈
{

B∗ ∈ F(V )| inf
v∈V

IT (B∗(v), B(v)) ≥ α

}
. Hence, for all v ∈ V , we obtain

successively:

IT (B′(v), B(v)) ≥ α ⇐⇒ T (B′(v), α) ≤ B(v) (Property IV)
⇐⇒ T (α, B′(v)) ≤ B(v) (Symmetry of T )
⇐⇒ IT (α, B(v)) ≥ B′(v) (Property IV)

This completes the proof. ut

In effect, this shows that if we put f(α, B)(v) = IT (α, B(v)) for every v in
V , a conclusion entailed by our algorithm is a superset (not necessarily a proper
one) of the according CRI–GMP result, which can be regarded as a justification
of its soundness: when we replace the output of the CRI–GMP by a less specific
fuzzy set, the result will never contain more information than we were allowed
to deduce with the original (reliable) inference mechanism.

We will make these results concrete by applying them to the  Lukasiewicz im-
plicator5, of which we already know (from section 2) that the associated inclusion
measure excels w.r.t. the proposed axioms. In this case, α = IncIa

(A′, A) =
inf
u∈U

min(1, 1 − A′(u) + A(u)) and according to corollary 3.1 f(α, B)(v) =

min(1, 1−α+B(v)) imposes itself as the proper choice of modification mapping.

Example 3.1. Consider the rule

IF dirt level is low THEN washing time is medium

which could be part of the implementation of a simple fuzzy washing machine.
We agree to express X (dirt level) in percentages, while the universe of Y (wash-
ing time) is taken to be the real interval [0, 90]. For simplicity, all membership
functions have triangular shape.

We illustrate the results of our approach to several fuzzy inputs. Figure 1
shows the membership functions for “low” and “medium”. The first input in fig-
ure 2 could be interpreted to mean “somewhat low”, while the second may repre-
sent the concept “around 20”. It can be checked that IncIa

(somewhat low,low) =
0.66 and IncIa

(around 20,low) = 0.60.
In figure 3 we show the inference result obtained with the inclusion–based

approach. Each picture also shows, as a dashed line, the output generated by
the corresponding CRI–GMP method (i.e. the one based on the (W, Ia) pair).
5 Ia is in fact a residual implicator generated by the t–norm W defined as W (x, y) =

max(0, x + y − 1), (x, y) ∈ [0, 1]2
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Notice that, while the maximal difference between the CRI–GMP result and
ours is bounded above by 1 − IncIa(A′, A) (since B(v) ≤ B′(v) ≤ f(α, B)(v)),
we generally get a fairly tight upper approximation and in a lot of cases, as 3.b
exemplifies, the results are equal.

As far as efficiency is concerned, the inclusion method clearly outperforms the
CRI–GMP: our technique requires only one inf–calculation (one min–calculation
in a finite universe) per inference while in the latter case we need to perform
this tedious operation for every v ∈ V .

Fig. 1. a) concept “low” b) concept “medium”

Fig. 2. a) concept “somewhat low” b) concept “around 20”

4 Relationship to Analogical Reasoning

Several authors have pursued the strategy of analogical reasoning in their quest
to model human behaviour in various cognitive tasks, such as classification and
decision making. As Bouchon et al. [3] state, “it amounts to inferring, from a
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Fig. 3. a) inference for “somewhat low” b) inference for “around 20”

known case which is similar enough to the encountered situation, that what is
true in the known case might still be true or approximately true in this situation”.

A panoply of similarity measures have been reviewed in the literature as a
means to draw analogies between situations (fuzzy sets). Just like our inclusion
measures, these operators yield a [0,1]–valued degree for any two fuzzy sets in
a given universe, which can likewise be used to set up appropriate modification
mappings. Similarity is however not a uniquely defined notion, and care should
be taken when adopting such or such interpretation for use in an application. The
predominant characteristics that most people look for in a similarity measure S
seem to be those proposed by Zadeh [14], i.e.6

S.1 S(A, A) = 1 (reflexivity)
S.2 S(A, B) = S(B, A) (symmetry)
S.3 min(S(A, B),S(B, C)) ≤ S(A, C) (min–transitivity)

where A, B and C are fuzzy sets in a given universe U .

For our purposes, i.e. the modelling of approximate analogical reasoning,
symmetry is actually both counterintuitive and harmful! Counterintuitive, be-
cause we compare an observation A′ to a reference A and not the other way
round; harmful, because imposing symmetry inevitably clashes with the sound-
ness condition A.4 (from A′ ⊆ A infer B′ = B), and renders inference absolutely
useless (just imagine a symmetrical measure S that satisfies S(A, B) = 1 if
A ⊆ B). Still, most of the research done so far did not take heed of this evident
pitfall, with the notable exception of Bouchon–Meunier and Valverde [4]: they
are also inclined to drop the symmetry requirement, but they failed to link their
proposed operators to the intuitive notion of fulfilment that we have developed
in the course of this paper.

So while we see that the idea of analogical reasoning is in itself very useful,
its execution so far has often been subject to essential misconceptions that have
put it, from a logical perspective, on the wrong track.
6 The transitivity condition S.3 can be relaxed by allowing a general t–norm to replace

min
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5 Conclusion

Our aim in this paper was twofold: firstly, we set out to reduce the complexity
present in the CRI–GMP, and secondly we redefined the semantics of analogical
reasoning in terms of fulfilment, stressing that the traditional symmetry condi-
tion is not only superfluous but also harmful to the proper functioning of an
inference system.
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