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Abstract. We propose a new approach for medical diagnosis by employ-
ing intuitionistic fuzzy sets [cf. Atanassov [T}2]]. Solution is obtained by
looking for the smallest distance [cf. Szmidt and Kacprzyk [7J8]] between
symptoms that are characteristic for a patient and symptoms describing
illnesses considered. We point out advantages of this new concept over
the method proposed by De, Biswas and Roy [4] where intuitionistic
fuzzy sets were also applied, but the max-min-max rule was used instead
of taking into account all, unchanged symptom values as proposed in this
article.

1 Introduction

For many real world problems, imperfect, imprecise information is a vital part
of the problem itself, and a continuing reasoning without proper modelling tools
may lead to generating inaccurate inferences.

Traditional methods of analysis are oriented toward the use of numerical
techniques. By contrast, much of human reasoning involves the use of variables
whose values are not numerical. This observation is a basis for the concept
of a linguistic variable, that is, a variable whose values are words rather than
numbers, in turn represented by fuzzy sets.

The use of linguistic variables represents a significant paradigm shift in sys-
tem analysis. More specifically, in the linguistic approach the focus of attention
in the representation of dependencies shifts from difference and differential equa-
tions to fuzzy IF — THEN rules in the form IF X is A THEN'Y is B, where
X and Y are linguistic variables and A and B are their linguistic values, e.g. IF
Pressure is high THEN Volume 1is low.

Description of system behaviour in the language of fuzzy rules lowers the
need for precision in data gathering and data manipulation, and in effect may
be viewed as a form of data compression.

But there are situations when description by a (fuzzy) linguistic variable,
given in terms of a membership function only, seems too rough. For example,
in decision making problems, particularly in the case of medial diagnosis, sales
analysis, new product marketing, financial services, etc. there is a fair chance of
the existence of a non-null hesitation part at each moment of evaluation of an
unknown object.

Intuitionistic fuzzy sets (Atanassov [T2]) can be viewed in this context as
a proper tool for representing hesitancy concerning both the membership and
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non-membership of an element to a set. To be more precise, a basic assumption
of fuzzy set theory that if we specify the degree of membership of an element
in a fuzzy set as a real number from [0, 1], say a, then the degree of its non-
membership is automatically determined as 1 — a, need not hold for intuition-
istic fuzzy sets. In intuitionistic fuzzy set theory it is assumed that the non-
membership should not be more than 1 — a. The difference let us express a lack
of knowledge (hesitancy concerning both the membership and non-membership
of an element to a set). In this way we can better model imperfect information —
for example, we can express the fact that the temperature of a patient changes,
and other symptoms are not quite clear.

In this article we will present intuitionistic fuzzy sets as a tool for reasoning in
the presence of imperfect facts and imprecise knowledge. An example of medical
diagnosis will be presented assuming there is a database, i.e. description of a set
of symptoms S, and a set of diagnoses D. We will describe a state of a patient
knowing results of his/her medical tests. Description of the problem uses the
notion of an intuitionistic fuzzy set. The proposed method of diagnosis involves
intuitionistic fuzzy distances as introduced in (Szmidt and Kacprzyk [7)8]). Ad-
vantages of such an approach are pointed out in comparison with the method
presented in (De, Biswas and Roy [4]) in which the max-min-max composition
rule was applied.

The material in the article is organized as follows. In Section [2] we briefly
overview intuitionistic fuzzy sets. Section [l presents De, Biswas and Roy’s [4]
approach for medical diagnosis via intuitionistic fuzzy relations, or — to be more
precise — via the max-min-max composition. In Section @] we propose a new
approach for solving the same problem — we also use intuitionistic fuzzy sets but
the final diagnosis is pointed out by the smallest distance between symptoms
characteristic for a patient and symptoms decsribing considered illnesses. Finally,
we finish with some conclusions in Section B

2 Brief Introduction to Intuitionistic Fuzzy Sets
As opposed to a fuzzy set (Zadeh [9]) in X = z, given by
A ={<zpy (@) > |z e X} (1)

where 11, : X — [0,1] is the membership function of the fuzzy set A" : yu /() €

[0,1]; is the membership of 2 € X in A’, an intuitionistic fuzzy set (Atanassov
[2]) A € X is given by

A={<z,pa(z),va(z) > |z e X} (2)
where: g : X — [0,1] and v4 : X — [0,1] such that
0<pa(x)+rva(z) <1 (3)

and p4(z), va(z) € [0, 1] denote the degree of membership and non-membership
of x € A, respectively.
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Obviously, each fuzzy set corresponds to the following intuitionistic fuzzy set
A= {< oy (@)1 - iy (@) > |o € X} (4)

For each intuitionistic fuzzy set in X, we will call
ma(r) =1—pa(r) —va(z) (5)

a hesitation margin (or intuitionistic fuzzy index) of x € A, and it is a hesitation
degree of whether x belongs to A or not [cf. Atanassov [2]]. It is obvious that
0 <ma(x) <1, for each z € X.

On the other hand, for each fuzzy set A in X , we evidently have
To(x)=1—py(x)—[1—py(x)] =0, foreach x € X (6)

Therefore, we can state that if we want to fully describe an intuitionistic
fuzzy set, we must use any two functions from the triplet:

e membership function,
e non-membership function, and
e hesitation margin.

In other words, the application of intuitionistic fuzzy sets instead of fuzzy
sets means the introduction of another degree of freedom into a set description
(i.e. in addition to p4 we also have vy or 74).

3 An Intuitionistic Fuzzy Sets Approach to Medical
Diagnosis Due to De, Biswas and Roy [4]

By following the reasoning of De, Biswas and Roy [4] (which is an extension
of Sanchez’s approach [bl6]), we will now consecutively recall their approach
to medical diagnosis via intuitionistic fuzzy sets, or to be more precise — via
intuitionistic fuzzy relations that in effect boils down to applying the max-min-
max composition [3].

The approach presented by De, Biswas and Roy [4] involves the following
three steps:

e determination of symptoms,

e formulation of medical knowledge based on intuitionistic fuzzy relations, and

e determination of diagnosis on the basis of composition of intuitionistic fuzzy
relations.
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A set of n patients is considered. For each patient p;, 1 = 1,...,n, a set of
symptoms S is given. As a result, an intuitionistic fuzzy relation @ is given from
the set of patients to the set of symptoms S.

Next, it is assumed that another intuitionistic fuzzy relation R is given —
from a set of symptoms S to the set of diagnoses D. The composition T of
intuitionistic fuzzy relations R and @) describes the state of a patient given in
terms of a membership function, ur(p;,dx), and a non-membership function,
vr(pi,dy), for each patient p; and each diagnosis dj.

The functions are calculated in the following way [4]:

pr(pidi) = \/ [1Q(pi, s) A pg(s, dy)] (7
ses
and
vr(pisdi) = N\ [va(pis ) V va(s.dy)] ®)
seSs

where \/ = max and /A = min.

Ezample 1. [4] Let there be four patients: Al, Bob, Joe and Ted, i.e. P = {Al,
Bob, Joe, Ted}. The set of symptoms considered is S = {temperature, headache,
stomach pain, cough, chest-pain}. The intuitionistic fuzzy relation Q(P — S) is
given in Table [

Table 1.
Q |Temperature|Headache|Stomach| Cough | Chest
pain pain
Al (0.8,0.1) (0.6,0.1) {(0.2,0.8){(0.6,0.1)[(0.1,0.6)
Bob| (0.0,0.8) | (0.4,0.4) |(0.6,0.1)|(0.1,0.7)[(0.1,0.8)
Joe| (0.8,0.1) (0.8,0.1) {(0.0,0.6){(0.2,0.7)[(0.0,0.5)
Ted| (0.6,0.1) | (0.5,0.4) |(0.3,0.4)[(0.7,0.2)[(0.3,0.4)

Let the set of diagnoses be D = {Viral fever, Malaria, Typhoid, Stomach
problem, Chest problem}. The intuitionistic fuzzy relation R(S — D) is given in
Table 2

Therefore, the composition T' ([Z)—(B) is given in Table B

But as the max-min-max composition was used when looking for 7', ”domi-
nating” symptoms were in fact only taken into account. So, in the next step an
improved version of R is calculated for which the following holds [4]:

o Sk = pugr — vrmg is the greatest, and
e cquations (@)—(8) are retained.

Effects of the presented improvements [4] are given in Table A
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Table 2.
R Viral |Malaria|Typhoid|Stomach| Chest
fever problem | problem
Temperature ((0.4,0.0)((0.7,0.0)|(0.3,0.3)[(0.1,0.7)|(0.1,0.8)
Headache (0.3,0.5)[(0.2,0.6)[(0.6,0.1)[ (0.2, 0.4) [(0.0, 0.8)
Stomach pain|(0.1,0.7)((0.0,0.9)((0.2,0.7)|(0.8,0.0) [(0.2, 0.8)
Cough (0.4,0.3)((0.7,0.0)((0.2,0.6)| (0.2,0.7) [(0.2,0.8)
Chest pain (0.1,0.7)|(0.1,0.8)((0.1,0.9)| (0.2,0.7) |(0.8,0.1)
Table 3.
T [|Viral fever|Malaria|Typhoid|Stomach problem|Chest problem
Al | (04,0.1) [(0.7,0.1)[(0.6,0.1) (0.2,0.4) (0.2,0.6)
Bob| (0.3,0.5) [(0.2,0.6)](0.4,0.4) (0.6,0.1) (0.1,0.7)
Joe| (0.4,0.1) |(0.7,0.1)|(0.6,0.1) (0.2,0.4) (0.2,0.5)
Ted| (0.4,0.1) [(0.7,0.1)[(0.5,0.3) (0.3,0.4) (0.3,0.4)
Table 4.
Viral fever|Malaria|Typhoid|Stomach problem|Chest problem
Al 0.35 0.68 0.57 0.04 0.08
Bob 0.20 0.08 0.32 0.57 0.04
Joe 0.35 0.68 0.57 0.04 0.05
Ted 0.32 0.68 0.44 0.18 0.18

267
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It seems that the approach proposed in [4] has some drawbacks. First, the
max-min-max rule alone (Table[3]) does not give a solution. To obtain a solution,
the authors [4] propose some changes in medical knowledge R(S — D). But it
is difficult to justify the proposed changes as medical knowledge R(S — D) is
(at least, should be without a doubt) based on many cases, and knowledge of
physicians, so it is difficult to understand sudden, arbitral changes in it.

Next, the type of changes: Sgp = ugr —vrmr means that the membership func-
tion describing relation R (medical knowledge) is weakened. But, in the idea of
intuitionistic fuzzy sets there is nowhere assumed that the membership function
can decrease because of the hesitation margin or the non-membership function.
The hesitation margin (or part of it) can be split between the membership and
non-membership functions (so, in fact, it can be added to, not substracted from
the membership function). Summing up, the proposed improvements, although
leading to some solutions, are difficult to understand because of arbitral (both
from practical (doctors’ knowledge) and theoretical (theory of intuitionistic fuzzy
sets)) points of view.

4 Medical Diagnosis via Distances for Intuitionistic Fuzzy
Sets

To solve the same problem as in [4], but without manipulations in medical knowl-
edge base, and with taking into account all the symptoms characteristic for each
patient, we propose a new method based on calculating distances between diag-
noses and patient tests.

As in [4], to make a proper diagnosis D for a patient with given values
of tested symptoms S, a medical knowledge base is necessary. In our case a
knowledge base is formulated in terms of intuitionistic fuzzy sets.

To compare the approach proposed in this article with the method of De,
Biswas and Roy [4], and described shortly in Section Bl we consider just the same
data. Let the set of diagnoses be D = { Viral fever, Malaria, Typhoid, Stomach
problem, Chest problem}. The considered set of symptoms is S = {temperature,
headache, stomach pain, cough, chest-pain}.

The data are given in Table[d — each symptom is described by three numbers:
membership g, non-membership v, hesition margin 7. For example, for malaria:
the temperature is high (u = 0.7, v = 0, 7 = 0.3), whereas for the chest problem:
temperature is low (x = 0.1, » = 0.8, 7 = 0.1). In fact data in Table2land Table
Bl are exactly the same (due to (5)) but by involving in an explicit way the
hesitation margin too, we want to stress that the values of all three parameters
are necessary in our approach.

The considered set of patients is P = {Al, Bob, Joe, Ted}. The symptoms
characteristic for the patients are given in Table [f]— as before, we need all three
parameters (u,v,m) describing each symptom but the data are the same (due to
(B)) as in Table[d

Our task is to make a proper diagnosis for each patient p;, ¢ = 1,...,4.
To fulfill the task we propose to calculate for each patient p; a distance of his
symptoms (Table[d) from a set of symptoms s;, j = 1,...,5 characteristic for
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Table 5.
Viral Malaria Typhoid Stomach Chest
fever problem problem
Temperature |(0.4,0.0,0.6)|(0.7,0.0,0.3)|(0.3, 0.3, 0.4)|(0.1,0.7,0.2)| (0.1, 0.8, 0.1)
Headache (0.3,0.5,0.2)[(0.2,0.6,0.2)|(0.6, 0.1, 0.3)| (0.2, 0.4, 0.4)| (0.0, 0.8, 0.2)
Stomach pain|(0.1,0.7,0.2)|(0.0, 0.9, 0.1)|(0.2, 0.7, 0.1)| (0.8, 0.0, 0.2)[ (0.2, 0.8, 0.0)
Cough (0.4,0.3,0.3)](0.7,0.0,0.3)[(0.2, 0.6, 0.2)| (0.2, 0.7, 0.1)| (0.2, 0.8, 0.0)
Chest pain__|(0.1,0.7,0.2)|(0.1,0.8,0.1)|(0.1,0.9,0.0)|(0.2,0.7,0.1)|(0.8,0.1, 0.1)
Table 6.
Temperature| Headache | Stomach Cough Chest
pain pain
Al 1(0.8,0.1,0.1) {(0.6,0.1,0.3)|(0.2,0.8,0.0)[(0.6,0.1,0.3)|(0.1,0.6,0.3)
Bob| (0.0,0.8,0.2) (0.4,0.4,0.2)|(0.6,0.1,0.3)|(0.1,0.7,0.2)|(0.1,0.8,0.1)
Joe| (0.8,0.1,0.1) |(0.8,0.1,0.1){(0.0,0.6,0.4)|(0.2,0.7,0.1)|(0.0, 0.5, 0.5)
Ted| (0.6,0.1,0.3) {(0.5,0.4,0.1)|(0.3,0.4,0.3)|(0.7,0.2,0.1)|(0.3,0.4,0.3)

each diagnosis di, k = 1,...,5 (Table [). The lowest obtained distance points
out a proper diagnosis.

In (Szmidt and Kacprzyk [7I8]) we proved that the only proper way of calcu-
lating the most widely used distances for intuitionistic fuzzy sets is to take into
account all three parameters: the membership function, the non-membership
function, and the hesitation margin. To be more precise, the normalised Ham-
ming distance for all the symptoms of the i-th patient from the k-th diagnosis

is equal to

5
1
U(s(pi), dy) = TOE ([ (pi) = pj(di)| + [vj(pi) — vi(de)| +
j=1

(9)

The distances () for each patient from the considered set of possible diag-
noses are given in Table [[l The lowest distance points out a proper diagnosis:
Al suffers from malaria, Bob from stomach problem, Joe from typhoid, whereas
Ted from fever.

We obtained the same results, i.e. the same quality diagnosis for each patient
when looking for the solution while applying the normalized Euclidean distance
[cf. Szmidt and Kacprzyk [718]]:

+ |mj(pi) — 7 (di)|)

10

(50, i) = (55 Dy ) — s (dh))? +

+ (mi(pi) =

j=1

i (di))?)

(vj(pi) —

N

vi(d))? +

(10)
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Table 7.
Viral fever|Malaria|Typhoid|Stomach problem|Chest problem
Al 0.28 0.24 0.28 0.54 0.56
Bob 0.40 0.50 0.31 0.14 0.42
Joe 0.38 0.44 0.32 0.50 0.55
Ted 0.28 0.30 0.38 0.44 0.54

The results are given in Table[8— the lowest distance for each patient p; from
possible diagnosis D points out a solution. As before, Al suffers from malaria,
Bob from stomach problem, Joe from typhoid, whereas Ted from fever.

Table 8.
Viral fever|Malaria|Typhoid|Stomach problem|Chest problem
Al 0.29 0.25 0.32 0.53 0.58
Bob 0.43 0.56 0.33 0.14 0.46
Joe 0.36 0.41 0.32 0.52 0.57
Ted 0.25 0.29 0.35 0.43 0.50

5 Conclusions

By employing intuitionistic fuzzy sets in databases we can express a hesitation
concerning examined objects. The method proposed in this article, performing
diagnosis on the basis of the calculation of distances from a considered case to
all considered illnesses, takes into account values of all symptoms. As a result,
our approach makes it possible to introduce weights for all symptoms (for some
illnesses some symptoms can be more important). Such an approach is impossible
in the method described in (De, Biswas and Roy [4]) because the max-min-max
rule “neglects” in fact most values except for extreme ones.
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