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Abstract: Performance of the field orientation in induction motors depends on the accurate estimation of the 
flux vector. The voltage model used for field orientation has in the flux calculation process an open integration 
problem, which is generally solved with a feedback loop. In this paper, a new method is developed for the 
feedback loop of the integrator. The method, as apart from studies in the literature, uses a fuzzy controller 
determined membership functions using a genetic algorithm (GA). For this purpose, a fuzzy controller is 
designed and tested on various motors of different power ratings. The proposed method is simulated by using 
MATLAB-SIMULINK and implemented on an experimental system using a TMS320C31 digital signal 
processor.  
 

 
1   Introduction 
 

The performance of the vector control is related to the accuracy of the resultant flux phase and 
magnitude information of the induction motor. There are two common methods to estimate the stator or rotor 
flux vector of the induction motor. These are called the current model and the voltage model. The current model 
does not contain an open integration, but requires the rotor parameters information and motor speed 
measurement during the flux calculation process. In this method, the flux vector is also estimated at standstill 
due to the lack of an open integration process. On the other hand, the voltage model is sensitive to stator 
parameters and requires voltage and current measurements, but it also does not require speed measurement. In 
sensorless vector control, the voltage model is most preferred. There are various methods of stator flux 
estimation using the voltage model. Rotor flux can also be estimated by using stator flux and motor parameters. 
The stator flux equations in the stator reference frame known as the voltage model are as follows: 

 

ò -= dt)Riu( ssss aaay      (1a) 

ò -= dt)Riu( ssss bbby      (1b) 

 

By using Equation 1a-1b, ay s  and by s can be estimated. The angle of the stator flux orientation can be 

calculated by using these equations. This angle is used for axes transformation between dqtoab  and called as 

transformation angle qs. 
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Fig. 1. Block diagram of the voltage model  
 

The block diagram in Fig. 1 shows the flux calculation process described in Equations 1a-1b. In this 
process, the integrator has no feedback. This open integration process causes drift in the integration. This 
integration process can be analog or digital. Digital flux integration has integration method and integration step 
size, errors in the current and voltage measurements, variations in the stator resistance due to temperature and 
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frequency of the current, initial value of the integrator, error introduced by the finite bit length of the processor, 
execution time of the commands etc. 
It is clear from the above open integrator that the performance of the voltage model depends on the stator 
resistance. This resistance gains further importance in low-speed operation where the voltage drop on this 
resistance becomes significant. At zero speed, it is not possible to estimate the stator flux by using this algorithm. 

Numerous papers exist in the literature on the integration problem, especially sensorless type direct 
vector-controlled drives. For example, Ohtani [1] proposed to add a feedback to the integration algorithm to 
solve the problem. In Ohtani’s study, a steady-state analysis of the issue is presented. In [2] another approach is 
studied. This is based on two-phase voltage and current measurements, and stability analysis is made under 
dynamic conditions. In this study, flux magnitude and flux derivative are used in the feedback loop. However, 
the gain of the flux derivative feedback is a function of the load and speed. Therefore, the performance of the 
system depends on the correct value of these feedback gains. A study by Patel [3] employs a cascade connected 
and automatically adjusted low-pass filter instead of the integrator. An algorithm proposed by A� � � � � �
eliminates the DC component of the integrator output, but it only works in the steady state.  

Some of the algorithms mentioned here are a d feedback integration algorithm to solve the stability 
problem of the integrator and a PI feedback integration algorithm. The block diagram and transfer function of the 
d feedback integrator are given in Fig. 2 and Equation 3 respectively. 
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Fig. 2. Block diagram of d feedback integrator 
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In this integrator, the d feedback path is used for stability of the integrator. When the frequency is high 

(jw>>d), the integrator function behaves well. However, when jw becomes comparable to d, both magnitude and 
phase errors appear and affect the performance both at steady state and in transient conditions. The d feedback 
integrator, shown in Fig. 2, eliminates offset substantially. However, integration output still involves phase shift 
and error in magnitude [5].  
 In this study, a fuzzy controller is developed for the feedback loop of the integrator. This fuzzy 
controller has the advantages of robustness, ease of design and good transient response.  

One of the main problems of a fuzzy controller design is the process of determining membership 
functions. Usually such a determination is obtained from human experts. However, the approach adopted for 
acquiring the shape of any particular membership function often depends on the application. For most fuzzy 
logic control problems, the membership functions are assumed to be linear and usually triangular in shape. So, 
typically the sets that describe various factors of importance in the application and the issues to be determined 
are the parameters that define the triangles. These parameters are usually based on the control engineer’s 
experience and/or are generated automatically. However, for many other applications, triangular membership 
functions are not appropriate as they do not represent accurately the linguistic terms being modelled, and the 
shape of the membership functions have to be elicited directly from the expert, by a statistical approach or by 
automatic generation of the shapes. 

GA was employed first by Karr [6] in determination of membership functions. Karr has applied GA to 
the design of a fuzzy logic controller (FLC) for the cart pole problem. Meredith [7] has applied GA to the fine 
tuning of membership functions in a FLC for a helicopter. Initial guesses for the membership functions are made 
by a control engineer, and the GA adjusts the defining parameters by through use in order to minimize the 
movement of a hovering helicopter. Again, triangular membership functions are used. Lee and Takagi [8] have 
also tackled the cart problem. They have taken a holistic approach by using GA to design the whole system 
determining the optimal number of rules as well as the membership function, which are again triangular. 
Recently, Arslan and Kaya [9] have proposed a new method for determination of fuzzy logic membership 
functions using GAs.  
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2   A Survey of Fuzzy Controller and Genetic Algorithms 
 
 Fuzzy logic is a technology based on engineering experience and observations. In fuzzy logic, an exact 
mathematical model is not necessary, because linguistic variables are used in fuzzy logic to define system 
behavior rapidly. Fuzzy logic is a very recent technology relative to conventional controllers; its areas of 
application are increasing very quickly. Fuzzy PID, fuzzy PI, fuzzy PD and fuzzy mixed controllers are fuzzy 
controller design approaches, but unlike conventional controllers the focus is not in the modeling [10]. 
 Some of the problems, such as stability and performance, are encountered both in fuzzy controllers and 
conventional controllers. Unlike conventional control design, where mathematical models are used to solve these 
problems, fuzzy controller design involves IF-THEN rules defined by an expert to tackle these problems. 

There are two methods that are commonly used to design fuzzy controllers: trial and error method and 
the theoretical method. In trial and error, IF-THEN rules are defined by using expert knowledge and experience. 
Then, these rules are applied to the actual system. Unlike the theoretical approach where the parameters are 
adjusted to guarantee the desired performance, in the fuzzy method the IF-THEN rules are modified until the 
desired performance is achieved. In practice, both methods can be used to obtain better performance [11].  
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Fig. 3. Block diagram of fuzzy control architecture  
 
The fuzzy controller has four components as shown in Fig. 3. These are: 

a- Fuzzifier: The input values are scaled and grouped into fuzzy sets. In other words, the input values 
labeled and transformed into linguistic variables.  

b- Inference mechanism: The inference mechanism uses a database and a rule base. The database involves 
membership functions that are used by the inference mechanism to make fuzzy decisions. 

b- Rule Base: Rule base is a set of IF-THEN rules defined by an expert. The inference mechanism uses 
these rules. 

c- Defuzzifier: The linguistic variables manipulated by the inference mechanism are converted back to real 
values. 

In a fuzzy controller design, the knowledge and observations of an expert are more important than the underlying 
mathematical model. This expert knowledge and observation is used while the system is being designed. This 
kind of approach provides an opportunity to easily embed experience into a controller, which has been gained 
over a long time. However, it is not possible to obtain automation during controller design. 

A GA is an iterative procedure that consists of a constant-size population of individuals, each one 
represented by a finite string of symbols, known as the genome, encoding a possible solution in a given problem 
space. This space, referred to as the search space, comprises all possible solutions to the problem at hand. 
Generally speaking, the GA is applied to spaces that are too large to be exhaustively searched. The standard GA 
proceeds as follows: an initial population of individuals is generated at random or heuristically. Every 
evolutionary step, known as a generation, the individuals in the current population are decoded and evaluated 
according to some predefined quality criterion, referred to as the fitness function. To form a new population 
individuals are selected according to their fitness. Many selection procedures are currently in use one of the 
simplest being Holland’s original fitness-proportionate selection [12]. Selection alone cannot introduce any new 
individuals into the population. These are generated by genetically inspired operators, of which the best known 
are crossover and mutation. 
 
3   Design of a Fuzzy Controller Using Genetic Algorithms 
 

In this paper, a fuzzy controller is used in the feedback loop of the integrator in the voltage model as 
shown in Fig. 4. The proposed fuzzy controller is based on rules and can be adopted to different machines easily. 
The membership functions of the fuzzy controller used are determined using GAs. Unlike conventional 
controllers, fuzzy controllers are less sensitive to sensor errors and small variations of the parameters.  
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Fig. 4. Block diagram of the fuzzy controller for stator flux estimation 
  

As shown in Fig. 4, the core of the estimation of the stator flux is the discrete integration of the 

difference between )R.iu( sss aa -  and the feedback signal. Rs is assumed constant during the simulation. In 

this figure, first the flux is compared to zero reference in the feedback loop. Next, this difference and the 
derivative of the difference are given as inputs to the fuzzy logic controller tuned membership functions using 
GAs. Each variable of the fuzzy controller is represented by using 7 membership functions at the input, as shown 
in Fig. 5a-5b, and 9 membership functions at the output in Fig. 5c. Initially, the base values and intersection 
points are chosen randomly. The ranges of the input and output variables are assumed to be [-1,1], [-1.5, 1.5] and 
[-1.5, 1.5], respectively. The fuzzy rule base which resulted in the most efficient process for this fuzzy controller 
is as shown in Fig. 5d. For better precision, the number of membership functions can be increased at the expense 
of computational cost.   

 

 
   (5a)               (5b)  

 

 
(5c) 
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rr

or
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(5d) 
 

Fig. 5. Membership functions, rule table and surface viewer of fuzzy controller (a). Initial membership 
functions of  input variable “error” (b). Initial membership functions of input variable “cerror” (c). Initial 
membership functions of output variable “action” (d). Rule table of fuzzy controller. 
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Fig. 6. The base lengths of the membership functions for input variable “error” 
 
The goal expected from the GA is to find the base lengths and intersection points of triangles corresponding to 
the input data. Each base length has minimum and maximum values available. For example, the GA searches 
base value bNB between the minimum value of error (i.e. -1) and the maximum value of ac (i.e. 1). The search 
intervals of some the base values and intersection points for variable error are as follows: 
 
bNB: -1, 1 ))errormax()error(min( -  

R1: -1, 1 ))errormax()error(min( -  

bNM1: -1, R1 )R)error(min( 1-  

bNM2: R1, 1 ))errormax(R( 1 -  

 
These base values and intersection points must be reflected in the definite range of the system, because 

their values depend on bit length. This is formulated as follows. 
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where d is the decimal value of a gene, L is the length of this gene, bmin is the minimum value of the area 
reflected, and bmax is the maximum value of that area. 

Two different gene pools are created in the GA process. While one of these pools codes the base lengths 
and intersection points of the input variables for the fuzzy system, the other pool does that of the output. Each 
chromosome in a gene pool consists of the values of the bases and the intersection points. The length of 
chromosomes in each pool depends on the definite ranges of the input and output variables. For example, the 
chromosome encoding the base lengths and the intersection points for the input variables of the fuzzy system 
consists of genes in the form bNBbNM1R1bNM2….bPM1R5bPM2bPB. 

The bit length of each gene may be different. In this study, when the bit length is chosen care has been 
taken that the sensitivity should be between 0.2 and 0.3. For example, because the range is –1, 1, if the gene of 

bNB is represented by 3bits, a sensitivity of 0.28 is achieved. ÷
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This value is equal to the decimal value of a change in the smallest bit of gene bNB. 
The GA process in each pool, therefore, includes the following steps: 
 
(i) Specify string length ls and population size N, 
(ii) Evaluate each chromosome with respect to the fitness function, 
(iii) Perform selection, crossover and mutation, 
(iv) If not (end-test) go to step (ii), otherwise stop and return the best chromosome. 
 
The fitness function of this procedure is calculated as follows: 
 

Fitness function=Max. error – Total error    (5) 
 
The maximum error is made large enough to prevent the value of the fitness function from being negative. The 
maximum error is found as follows: 
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From the equation above, the maximum error is equal to 20.25. Total error is calculated as follows: 
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where 

iGAaction is the output found by GA in current cycle and iaction  is the output obtained in previous 

cycle.  
     To find the desired results, first of all, corresponding membership functions are found for the ith values of the 
input variables. Then, it is determined whether or not these two membership functions may be put in a rule. If 
there is a rule between these two membership functions, the grades of the membership functions are calculated 
and analysed to determine if the rule contains AND or OR. If these two membership functions are ANDed, 
outputs are determined from lower grades of membership functions, but if two membership functions are ORed, 
outputs are determined from higher grades of membership functions. 
If there is more than one membership function intersecting with the ith input of any input variable, then the 
outputs of these membership functions are both evaluated, and the one which has less error is used. 
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Fig. 7. The method of finding appropriate outputs of GA for the ith inputs 

 
The ith inputs intersect with NB and NM for error and with NB for dd. After obtaining the intersection situation 
from Fig. 4, grades of membership are determined for each membership function. Then, from the rule bases that 
were obtained from both small and slightly dirty, the outputs are calculated from short and warm. While doing 
calculations, m2 is taken as 0.2, because the rule involves AND (m2 < m1). Since there is also a rule between 
medium and slightly dirty, the outputs are calculated for m1=0.1. The outputs are calculated from both rules, and 
the one which has less error compared to the desired output is used. This situation is depicted for 3 membership 
functions in Fig. 7. In other words, 
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Two important points should be noted here. First, if the intersection between membership function and 
reference input occurs on the left-hand side of the intersection point (R1) in a non-right triangle, and the output 
occurs in the range of non-right triangle for the rule, then the output is also taken from the left-hand side of the 
intersection point. The same rule is valid for the right hand side as well. The second important point is that if 
there is no rule between any two membership functions for input variables. However, The rule base used here 
has complete rules.  
 
4   Experimental Setup 
 

To verify the proposed compensation algorithm, an experimental setup with an induction motor drive 
has been constructed. Fig. 8 shows the block diagram of the drive system where a conventional field oriented 
control is implemented. An IGBT inverter, which is controlled by a digital hysteresis control algorithm, is used 
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to drive the motor. The controller board is a DS1102 from dSPACE GmbH. The processor on the controller 
board is a Texas Instruments TMS320C31 32-bit floating-point processor with a 60 ns instruction cycle. The 
DS1102 is also equipped with a four channel analog-to-digital converter (two 16-bit and two 12-bit channels), a 
four channel 12-bit DAC and two incremental encoders. 

In this experimental setup, LEM sensors are used to measure two-phase currents. The voltage 
information is obtained from the inverter switching position including dead time effects. The vector control 
algorithm has an execution cycle time of 35 ms.  The new algorithm with the fuzzy controller consumes an 
additional 80 ms of execution time. In this experimental setup the speed control is implemented by using speed 
estimation. However, the speed estimation algorithm has been checked with encoder output for confirmation.  
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Fig. 8. Block diagram of the experimental setup 

 
5   Simulation and Experimental Results 
 
 Various simulations were carried out by using MATLAB/SIMULINK to assess the performance of the 
integrator with a fuzzy controller on the feedback. The fuzzy controller used for estimating the flux is developed 
by the MATLAB Fuzzy Toolbox. Simulations are performed to investigate transient state and steady state 
performance of the proposed flux estimator. 

In the simulations, we tested the fuzzy controller by using two induction motors of different power 
rating. The stator flux waveform of the fuzzy-controlled for a 3-HP motor is given in Fig. 9. In Fig. 10 
experimental result of the fuzzy controller is given. The difference between these results is negligible. The same 
simulations mentioned above are also performed for a 500-HP motor as shown Fig. 11.   

Experimental results mentioned above are obtained by TRACE31 software. Experiments and 
simulations are also performed in different torque reference and load conditions for the three motors used in the 
previous simulations. In these simulations the fuzzy controller performed better than other algorithm in most of 
the torque load conditions.  

The membership functions of the fuzzy controller are determined by using GA in offline run. Although 
the GA decreases a little the performance of the system, the user’s effect disappears on the system.   
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Fig. 9. Simulation results of the fuzzy controller for 3 hp motor. 
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Fig. 10. Experimental results of the fuzzy controller for 3 hp motor. 
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Fig. 11. Simulation results of the fuzzy controller for 500 hp motor. 
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6   Conclusions 

 
In this paper a digital integrator employing a fuzzy controller feedback is presented to calculate the 

stator flux vector. The membership functions of the fuzzy controller have been determined by using GA. 
Implementation of the proposed algorithm has been performed using a TMS320C31 processor. The most 
important advantage of this new system is to provide a robust structure and simple design. Moreover, the 
proposed fuzzy controller method has a shorter settling time then other integration methods. 
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