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j.muruzabal@escet.urjc.es

Abstract. As data sets get larger and larger, the need for exploratory
methods that allow some visualization of the overall structure in the data
is becoming more important. The self-organizing map (SOM) introduced
by Kohonen is a powerful tool for precisely this purpose. In recent years,
SOM-based methodology has been refined and deployed with success in
various high-dimensional problems. Still, our understanding of the prop-
erties of SOMs fitted by Kohonen’s original algorithm is not complete,
and several statistical models and alternative fitting algorithms have
been devised in the literature. This paper presents a new Metropolis-
Hastings Markov chain Monte Carlo algorithm designed for SOM fitting.
The method stems from both the previous success of bayesian machinery
in neural models and the uprise of computer-intensive, simulation-based
algorithms in bayesian inference. Experimental results suggest the feasi-
bility as well as the limitations of the approach in its current form. Since
the method is based on a few extremely simple chain transition kernels,
the framework may well accommodate the more sophisticated constructs
needed for a full emulation of the self-organization treat.

1 Introduction

Kohonen’s self-organizing map (SOM) [10] provides a fast, scalable and easy-
to-interpret visualization tool. Complemented with Sammon’s mapping [11] and
several diagnostic statistics [1], it has proved useful for several data analysis
tasks, see e. g. [12,13]. While this applied success is stimulating, the relative
theoretical opacity of the original fitting algorithm has made it hard to define
the particular state of affairs that the SOM structure should converge to [4]. One
of the frequently cited problems of the standard fitting algorithm is that it is
not supported by any statistical model when perhaps it should, for it attempts
after all to carry out a density estimation task.

Several bayesian models have been proposed to bear on this issue. Utsugi’s
prior [16] places a direct smoothing constraint on the set w of SOM pointers.
The generative topographic mapping (GTM) approach [2] introduces a latent
covariate and tries to hard-wire the SOM’s smoothness by means of a non-linear
map from latent to data space. This map effectively links the set of pointers
beyond the SOM topology. As a result of this modelling effort, several EM-
like techniques are now available as alternative fitting algorithms for the SOM

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 346–355, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



On the Emulation of Kohonen’s Self-Organization 347

structure. However, the practical usefulness of these algorithms is to be fully
demonstrated yet [9]. Meanwhile, there clearly remains room for analysis of fur-
ther algorithms that, on the basis of these sensible models, pursue the emulation
of the self-organizing ability.

In recent years, analysis of more complex bayesian models has been made pos-
sible thanks to fundamental advances in Markov chain Monte Carlo (MCMC)
theory, see e.g. [5,15]. MCMC methods are based on iterative sampling algo-
rithms: given a target posterior distribution π on some space of structures of
interest, they provide a collection of structures that can be approximately taken
as iid draws from π. Estimates of a variety of posterior features, together with
their corresponding standard errors, can be built in principle from these values.
In the context of neural networks, the most general models involve network archi-
tecture parameters γ, network weights or pointers w = w(γ) and other objects
like prior hyperparameters α and likelihood parameters β (collectively denoted
by h = {α, β}). The most sophisticated MCMC methods rely on reversible jump
MCMC theory [6] to explore full posteriors of the form π = π(γ,w, h/x), where
x is the training data. For example, Rios Insua and Müller [14] derive an approx-
imation to the posterior of the number of units in the hidden layer of a standard
feed-forward network. Similar contributions in other neural models have been
hindered by the difficulty in elliciting sensible prior distributions over the huge
space of possible (γ,w, h). For example, in the SOM model the map size would
become a variable parameter. Neither Utsugi [16,17] nor Bishop and coworkers
[2,3] consider indeed MCMC methods for the SOM model.

The first MCMC method in the SOM context has been proposed in [18].
Utsugi essentially formulates a Gibbs sampler [5,15] for posteriors of the form
π = π(w, h/γ,x). In practice, the SOM is typically planar, and we know that
the choices of topology, shape and size are not crucial to obtain useful results.
Hence, conditioning on γ substantially reduces the complexity of the problem
while imposing only a mild limitation on the overall scope. In this paper I con-
sider an even simpler MCMC method (developed independently of [18]) based
on posteriors of the form π(w/h, γ,x), where α and β are scalar quantities. Since
the choice of conditioning h may modify the posterior landscape substantially,
the approach involves some pretesting with various α and β and is thus quite
exploratory in its present form. Still, the class of Metropolis-Hastings (MH) al-
gorithms [5,15] reviewed below is rather flexible and permits to explore how far
can one go by replacing the conditional distributions in Gibbs samplers with
simple transition kernels inspired by the SOM’s original fitting algorithm and
bayesian assumptions. Note also that the two MCMC algorithms just discussed
always maintain a single SOM in memory. Such algorithms are thus markedly
different from multiple MCMC samplers, see e.g. [8]; these maintain a population
of networks from which transition proposals based on several networks can be
made.

The organization is as follows. The basic notation and assumptions in
bayesian SOM modelling are provided in section 2. Section 3 summarizes some
relevant MCMC theory. Section 4 presents the new class of MH algorithms and



348 J. Muruzábal

section 5 reports on their performance in some data sets. Section 6 summarizes
and provides directions for future research.

2 Bayesian Self-Organizing Maps

The self-organizing map is a biologically-inspired network of interconnected neu-
rons or units s, each endowed with an associated pointer ws ∈ IRm [10]. Let us
focus for simplicity on the 2-D case and consider squared SOMs with r = k2

units and standard connectivity. A data matrix x containing n exchangeable
vectors x(l) ∈ IRm is used for training. A trained SOM (fitted by the standard
algorithm or otherwise) should satisfy two key desiderata: (i) the “density” of
the pointer cloud should resemble the underlying distribution of the data; and
(ii) pointers should exhibit topological order or self-organization, a notion un-
fortunately hard to pin down precisely [4]. The standard fitting procedure tends
to achieve these two goals at a reasonable computational cost. For inspection of
trained SOMs, we usually project the map w = {ws, s = 1, .., r} onto 2-D space
via Sammon’s mapping [11]. Since the set of pointers “inherits” the connectivity
pattern, pointers can be linked to its immediate neighbours on these images and
we can evaluate informally the amount of organization in the fitted SOM, see
Figures 1 and 2 below.

Statistical models recently introduced for the SOM agree to set a Gaus-

sian mixture sampling (or generative) model P (x/w, β) =
n∏

l=1

r∑
s=1

1
rf(x(l)/ws, β),

where f(x/ws, β) = ()β2π
m
2 exp{−β

2 ‖x− ws‖2} and β > 0 controls the
dispersion of the data “generated” by any given unit [2,16]. As regards
the prior P (w/α), it is customary to assume independent coordinates.
A general choice for P (w/α) is the Gaussian process prior P (w/α) =

()12π
rm
2 |α|− m

2
m∏

j=1
exp{− 1

2w
T
(j)α

−1w(j)}, where α is, in principle, a dispersion

matrix expressing the desired bias towards smoothness in some way and w(j) ∈
IRr collects the j-th coordinates from all pointers. The full model is com-
pleted by the second-stage prior P (α, β), from which the key joint distribution
P (x,w, α, β) = P (x/w, β)P (w/α)P (α, β) follows.

In their GTM model [2], Bishop, Svensén and Williams extend the previous
formulation. They assume a latent variable z ∈ IRL, L � m, and a prior density
on latent space P (z) which is discrete uniform on some fixed z = {zs, s = 1, ..., r}
(typically an evenly-spaced, rather arbitrary collection of latent vectors). A non-
linear, one-to-many map τ, parametrized by am×M matrix Λ, formally links the
latent and data spaces, so that each pointer ws becomes ws = τ(zs, Λ)=ΛΦ(zs)
for a set Φ of M fixed basis functions defined on IRL. As shown by the authors,

the emerging log-likelihood L(Λ, β;x) =
n∑

l=1
log

{
1
r

r∑
s=1

f(x(l)/τ(zs, Λ), β)
}

can

be maximized by a variant of the EM algorithm. Note that each zs plays the role
of a single neuron and each τ(zs, Λ) plays the role of a single pointer, so that the
number of degrees of freedom of the map w is reduced substantially. Further,
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since τ is continuous and smooth, the τ(zs, Λ) centroids will be automatically
organized, see [2] for details on Φ,M and L.

Returning to our previous bayesian model, in [3] GTM’s latent structure
is used to reduce the complexity in P (w/α) by taking αst exp{−λ

2 ‖zs − zt‖2},
where zs and zt are the latent vectors generating map units s and t respectively
and λ > 0 is a single scalar expressing correlation decay that naturally plays the
role of α in P (x,w, α, β). Utsugi [18] dismisses this idea and prefers to achieve
a similar level of simplicity via the alternative choice α = (λDTD + µETE)−1,
where D and E are fixed matrices and λ and µ are (scalar) weight factors.
Utsugi assigns the main role to the D matrix (E is just included to guarantee a
proper prior). If we set µ = 0 for simplicity, we are led to P (w/α) = P (w/λ) =
m∏

j=1

(
λ
2π

)R
2

√
∆ exp

{
−λ

2

∥∥Dw(j)
∥∥2

}
, where R and ∆ are the rank and product

of positive eigenvalues of DTD respectively. This is the prior used below for the
usual D smoothing matrix, the so-called five-point star approximation to the
Laplacian operator in 2-D [16]. Specifically,D has R = (k−2)2 rows (one for each
interior unit), and the row addressing pointer (u, v) presents a −4 at location
(u, v), ones at its four neighbours’ locations {(u − 1, v), (u + 1, v), (u, v − 1),
(u, v + 1)} and zeros elsewhere. The resulting conditional log posterior function

is logP (w/x, λ, β) =
n∑

l=1
log

r∑
s=1

exp
{

−β
2

∥∥x(l) − ws

∥∥2
}

− λ
2

m∑
j=1

∥∥Dw(j)
∥∥2
. The

following MCMC computations are based on P (w/x, λ, β) playing the role of
π(w/h, γ,x) as discussed in the Introduction (it will simply be written π(w)
below). I sometimes refer to the two summands in this expression as the fit and
smoothness components respectively.

3 Some MCMC Background

We now briefly review the basic aspects of the Metropolis-Hastings (MH) class
of algorithms [5,15]. The key result states that an invariant distribution π of a
time-homogeneous Markov chain G with transition kernel Γ is also its limiting
distribution provided (G,Γ ) is aperiodic and irreducible. Intuitively, for the chain
to be irreducible any state should be reachable from any other state. Likewise, an
aperiodic chain is not forced to visit certain (subsets of) states in any systematic
way. The main idea in bayesian analysis is to simulate a suitable chain (G,Γ )
having the posterior of interest π as invariant distribution. The limiting (long-
run) behaviour of the chain is then taken as an approximation to iid sampling
from π.

The class of MH algorithms easily yields kernels Γ guaranteing the station-
arity of any given π as follows. Let q(a, b) denote a proposal density configuring
the MH transition kernel Γ . Then, given that the chain is at state a, a random
proposal b is made according to q(a, ·) and accepted with probability ψ(a, b) =
min{1, π(b)q(b,a)

π(a)q(a,b)}; if the proposal is not accepted, then the chain stays at state a
and a new b is drawn from q(a, ·), etc. This procedure guarantees the stationarity
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of π. In practice, q is to be devised to ensure that the chain is also aperiodic and
irreducible.

An easy way to do this is to decompose q as a (finite) mixture of several
densities qθ (with respective activation probabilities pθ), all of which have π
as stationary distribution and one of which, say θ0, does possess the desired
properties of aperiodicity and irreducibility in a trivial way. The mixture chain
defined by q =

∑
θ pθqθ first selects some θ and then makes a proposal according

to qθ(a, ·). As long as the corresponding pθ0 is strictly positive, this mixture
q inherits the target properties and hence provides a means to simulate the
posterior π according to the MH strategy. The basis density θ0 is usually quite
simple; it is the remaining qθ in the mixture which provide adequate scope for
the strategy.

In the case of SOMs w ∈ IRrm, it is straightforward to see that the role of θ0
can be played by either a joint spherical Gaussian random walk w̃ ∼Nrm(w, σ2

1I)
(updating all pointers ws at once) or else a uniform mixture density made
up by the lower-dimensional, single-pointer spherical Gaussian random walks
Nm(ws,σ2

sI) (updating a single ws at a time). Here typically the σ2
s are all equal

to some σ2
2 . These “background” processes are referred to below as (B1) and

(B2) respectively. Note that, in either case, q(w, w̃) = q(w̃,w), so ψ(w, w̃) boils
down to min{1, π(w̃)

π(w)}.
Consider now the case of more general block transitions qθ in our SOM

context. Now index θ refers to (possibly overlapping) subsets of coordinates
of w, for example, those associated to one or several pointers ws. The acti-
vation probabilities pθ correspond to random drawing among all possible θ.
If we decompose, with an obvious notation, w = {wθ,w(θ)}, we typically use
qθ(w, w̃) = q(w, w̃θ) for all θ, that is, at each transition step proposals are
made to update the θ portion only (but these proposals are always made in
the same way as in the case of (B2) above). It follows that w(θ)= w̃(θ) and

hence ψ(w, w̃) = min{1, π(w̃θ/w̃(θ))q(w̃,wθ)
π(wθ/w(θ))q(w,w̃θ)}. An important particular case oc-

curs then when q(w, w̃θ) = q(w(θ), w̃θ) equals the conditional posterior density
π(w̃θ/w(θ)), the so-called Gibbs sampler. In this case, ψ(w, w̃) ≡ 1, that is,
all proposed transitions are automatically carried out. Of course, depending on
the complexity of θ and π, it may not be always straightforward to find the
conditionals π(·/w(θ)) required for sampling.

Utsugi’s [18] Gibbs sampler involves chains that have entire SOMs w to-
gether with hyperparameters λ, β and membership dummies y as state space.
Thus, his sampler alternates between π(y/x,w, β), π(w/x,y, λ), π(λ/x,y,w)
and π(β/x,y,w). Here, in contrast, we are envisaging a sampler oriented to
SOM portions θ (for fixed choice of hyperparameters and using no latent struc-
ture). In the next section, we consider MH algorithms based on simple proposal
densities q(w, w̃θ) for certain types of subsets θ. This simplicity comes of course
at the price of having to evaluate the posterior ratios π(w̃)

π(w) at each tentative w̃θ.
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4 SOM Fitting via MH Samplers

It is clear that the traditional SOM algorithm, although Markovian in nature, is
far from the MH family. For example, in the standard sequential implementation
of this algorithm all pointers in some neighbourhood are linearly shifted at each
time step towards the current data item x(l), the neighbourhood width being
a user-input decreasing function. This shifting inspires nonetheless one of the
proposal densities q(w, w̃θ) discussed below. The other stems from the smoothing
character of the assumed prior P (w/λ).

Four MH algorithms for SOM fitting are explored. The first two, (B1) and
(B2) (given above), are meant as simple reference algorithms of scant value on
their own; they include a single tunable scalar each. The other two algorithms,
(A1) and (A2), are mixture chains based on (B1) or (B2) as background processes
that incorporate smoothing and block-shift transitions. Let us describe these
kernels first.

Smoothing transitions apply to individual interior units s only. They ex-
ploit the SOM topology in order to provide a simple smoothing counterpart to
the conditional density discussed in the previous section. Specifically, let νs de-
note the standard 8-unit neighbourhood of unit s (excluding s itself) and write
∂ws for the usual average (mean) vector of ws, s ∈ νs. A transition is then
proposed from ws to some w̃s drawn from a Nm(∂ws, τ

2
1 I) distribution. The as-

sociated ratio q(w̃(s),ws)
q(w(s),w̃s) becomes exp{− 1

2τ2
1
(‖ws − ∂ws‖2 − ‖w̃s − ∂ws‖2)}, so

that ψ(w, w̃) = exp{min[0, Ψ(w, w̃)]} with Ψ(w, w̃) = [log π(w̃) − log π(w)] −
1

2τ2
1
(‖ws − ∂ws‖2 − ‖w̃s − ∂ws‖2). Note that the intended smoothing effect oc-

curs only if τ2
1 is relatively small, in which case the last term in Ψ(w, w̃) may

downplay any log posterior improvement introduced by the new w̃s. Thus, care
is needed when setting the value of the shift variance τ2

1 .
Block-shift transitions act on edges of the net. These transitions are intended

to facilitate the higher mobility that such units are expected to need. Specifically,
given a unit s on some edge of the network, let νs denote now unit s together
with its 5 immediate neighbours (3 in the case of corners). A single δ is drawn
from a Nm(0,τ2

2 I) distribution, and w̃s = ws + δ for all s ∈ νs. Clearly, in this
case ψ(w, w̃) simplifies again as in (B1) or (B2). Note the difference with respect
to the standard training algorithm whereby δ is different for each s.

We can now describe the remaining MH algorithms; they implement two
possible combinations of the above ideas and are defined as follows. Algorithm
(A1): at each time step a coin with probability of heads χ is tossed. If heads, a
global transition (B1) is attempted. If tails, a unit is randomly selected from the
network. If interior, then a smoothing transition is proposed, otherwise a local
(B2) transition is attempted. Algorithm (A2): at each time step a similar coin is
tossed. If heads, a local (B2) transition is attempted. If tails, a unit is selected
as before. If interior, a smoothing transition is proposed, otherwise a block-shift
is attempted. Note that both (A1) and (A2) present four tunable scalars each.
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5 Experimental Results

In this paper I concentrate on the issue of how effective the proposed kernels are
with regard to the goal of emulating the standard fitting algorithm [11]. SOMs
obtained by these algorithms are contrasted in several toy problems for various
choices of hyperparameters λ and β. Relatively small SOMs of 6 × 6 and 7 × 7
neurons are used (so we have approximately the same number of interior and
edge units). Before we actually dwell into the experiments, a couple of remarks
are in order.

It is a fact that MH samplers tend to struggle with multimodality. In practice,
this entails that convergence to a suboptimal posterior mode is expected in
nearly all cases. This is not so critical though, for there are clearly many useful
modes in our SOM context. Hence, the proposed algorithms are evaluated on
the basis of the individual SOMs obtained after a fixed number of iterations. Of
course, random allocation of pointers is likely to require exceedingly long runs,
and alternative initialization procedures are almost compulsory. A simple idea
(similar to initialization based on principal components [11] and used below)
is to place all initial SOM pointers regularly on a random hyperplane (going
through m randomly chosen rows of x). The result typically will not fit the data
well, yet it is a flat structure that should free samplers from the ackward phase
of early organization.

As regards selection of tunable scalars, the heads probability χ was simply
set to 1

2 throughout. As usual, all sampling variances were tuned on the basis
of the acceptance rate ξ of their proposed transitions. This selection process is
somewhat tricky since acceptance rates typically decrease along the run and not
much is known about optimal values in general. The following simple strategy
was based on the anticipated run length. Background processes (B1) and (B2)
were first run separately in order to select values for σ2

1 and σ2
2 leading to ξ’s

around 30% after a few thousand trials. These selected values were then main-
tained in (A1) and (A2), and the remaining τ2

1 and τ2
2 were tuned so that the

overall ξ’s remained between 15 and 25% after 10,000 trials.
Two artificial test cases are considered: a four-cluster Y-shaped data set

(n = 100, m = 3) and a cigar-shaped data set (n = 100, m = 10). The four-
cluster data were generated as a balanced mixture of four Gaussians with small
spherical spread and centers located at the corners of a folded Y, see Figure
2. Dimensionality is kept low in this case to allow for direct inspection; the
3-D folding guarantees an interesting structure for the 2-D SOM to capture.
The cigar-shaped data (see Figure 1) consists of an elongated bulk with point-
mass contamination. The bulk (80%) was derived from a Gaussian distribution
with zero mean and equicorrelation dispersion matrix with correlation .9. The
remaining 20% were generated by another Gaussian with small spherical spread
and mean far away from the bulk.

Let us begin with the cigar-shaped data. The fit is done under λ = 100
and β = 1 (thus placing a strong emphasis on the smoothness of the final map).
Algorithm (A1) was executed 5 times for 10,000 trials under standard deviations
σ1 = .005, σ2 = .045 and τ1 = .025; these led consistently to acceptance rates
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Fig. 1. Projections (via Sammon’s map) of SOMs fitted to the cigar-shaped data by
MH algorithm (A1) (top row) and by the standard algorithm (bottom row). In all cases
solid squares cover the elongated bulk and circles cover the outliers (dots are empty).

by their associated proposals of about 15%, 3% and 58%, with a combined rate
of 23%. Figure 1 portrays two SOMs obtained by this MH sampler (second and
worst with regard to log posterior values) together with two SOMs fitted by the
standard algorithm. As expected, the larger value of λ translates into rather flat
structures by (A1), yet we can recover the structure in the data by focusing on the
pattern of nonempty units. On the other hand, the standard algorithm arranges
pointers more faithfully according to the underlying data density. While not fully
organized, these SOMs undoubtedly provide a more accurate description of the
data.

Consider next the four-cluster data. We now examine performance by (A2)
under λ = 10, β = 1, 000 (thus priming heavily the fit component) and σ2 = .2,
τ1 = .15 and τ2 = .35 (leading respectively to partial acceptance rates of 35%,
10% and 5%, with an overall rate of about 21%). Five runs were again conducted,
and this time the median log posterior SOM was selected for comparison. Figure
2 shows this SOM together with another map fitted by the standard algorithm.
The differences are again outstanding as regards visual appearance and log den-
sity values. Specifically, the standard algorithm scores about −6, 100 and −530
in the smoothness and fit log density scale respectively, whereas (A2) yields −50
and −1, 710 respectively. Hence, the standard algorithm is clearly willing to sac-
rifice a good deal of smoothness in order to arrange pointers closer to the data.
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Fig. 2. 3-D rotating plots for the four-cluster data: SOMs fitted by the standard algo-
rithm (left) and by the MH algorithm (A2). Data are superimposed for reference. Axes
are included to highlight the different viewpoints adopted in each case.

We conclude that, even under the favorable β used in this run, the MH algorithm
can not produce the clusters of pointers needed to improve the fit beyond the
smoothness requirement.

6 Summary and Concluding Remarks

A new class of MH algorithms for SOM fitting has been presented and some
preliminary experiments reported. Following Utsugi’s [16] model choice for
smoothing prior and gaussian mixture likelihood, it has been shown that it
is relatively easy to emulate the smoothness property of the trained SOM
via MH algorithms. A useful analysis may then proceed on the basis of the
pattern of non-empty units on the network. However, it is the SOM’s density
estimating goal which remains ellusive and may require the design of additional
transition kernels. Specifically, kernels that somehow home in on detected
concentrations of the data should be most useful here. Furthermore, alternative
prior distributions should be devised in order to set up a more flexible sampling
scheme; the prior used here may be too strict in penalizing slight but useful
departures from very smooth arrangements of pointers. Overall, it is hoped that
the reviewed MH approach proves useful for the future development of new
kinds of SOM samplers including the forementioned reversible jump samplers
[6,14], multiple-map samplers [8] and Gibbs samplers [18]. In addition, the class
of adaptive samplers presented in [7] may be useful to cope with the issue of
kernel variance tuning.
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