
Meeting the Computational Demands of Nuclear
Medical Imaging Using Commodity Clusters

Wolfgang Karl1, Martin Schulz1, Martin Völk2, and Sibylle Ziegler2

{karlw, schulzm, voelk}@in.tum.de, s.ziegler@lrz.tum.de
1 Lehrstuhl für Rechnertechnik und Rechnerorganisation, LRR–TUM
Institut für Informatik, Technische Universität München, Germany

2 Nuklearmedizinische Klinik und Poliklinik, MRI-NM,
Klinikum Rechts der Isar, Technische Universität München, Germany

Abstract. Even though Positron Emission Tomography (PET) is a rel-
atively young technique within Nuclear Medical Imaging, it has already
reached a high level of acceptance. However, in order to fully exploit its
capabilities, computational intensive transformations have to be applied
to the raw data acquired from the scanners in order to reach a satisfying
image quality. One way to provide the required computational power in
a cost–effective and efficient way, is to use parallel processing based on
commodity clusters.
These architectures are traditionally programmed using message passing.
This, however, leads to a low–level style of programming not suited for
the general user. In this work, a new programming environment based
on a graphical representation of the application’s behavior has been suc-
cessfully deployed. The result is an image transformation application,
which is both easy to program and fulfills the computational demands
of this challenging application field.

1 Motivation

Over the last few years, Positron Emission Tomography (PET) has become a
very important instrument in medical diagnosis procedures. However, in order
to reach the level of image quality needed, computational intensive algorithms
need to be deployed for the conversion of raw scanner data to humanly readable
images, the so called PET image reconstruction. Quite a bit of work has been
invested in increasing the image quality [5], but the computational demands
remain high. One way to match these requirements in order to keep the time
needed for image reconstruction process at an acceptable level and therefore
to make the application of these improved algorithms in daily clinical routine
feasible, is the deployment of parallel computing.

An attractive platform for such an approach are clusters built from com-
modity parts. They are cost effective and easy to build and maintain. Due to
these very favorable properties, this class of architectures has recently earned
a lot of attention and has started to replace traditional large–scale tightly cou-
pled parallel systems. Clusters are generally programmed using message passing,

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 27–36, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



28 W. Karl et al.

mostly in the form of a standard library like PVM [1] or MPI [6], as this directly
matches their distributed memory organization. These message passing APIs,
however, are in most cases quite complex and cumbersome to apply. The user
has to worry about many implementation details related to communication and
data management, which do not belong to the actual problem to solve. This dis-
courages many potential users, especially those directly from application areas
without a formal computer science background, and therefore hinders the wide
deployment of cluster architectures outside of computer science research.

One approach to overcome this problem of complex programmability is to
deploy a programming environment which offers a high level of abstraction to the
user and hides most of the low–level complexity of the underlying architecture.
Such an approach has been taken within the NEPHEW project [9], which this
work is part of, by applying a graphical programming environment, called Peak-
Ware [8], for the implementation of several real–world applications including the
reconstruction of PET images discussed in this paper.

In PeakWare, any communication within the whole system is abstracted into
a modularized graphical representation which is easily comprehendible for the
application programmer. The actual implementation of the communication, as
well as the mapping of the application onto the target architecture, is automat-
ically taken care of by the system. This creates a framework that enables an
efficient implementation of a PET image reconstruction software on top of a
Windows based PC cluster without having to deal with most of the complex
issues normally involved in parallel and distributed processing. The resulting
system is able to perform the reconstruction of a whole body scan in about 3
minutes. This is within the limits that allow an interactive on-line diagnosis by
doctors while the patient remains in the clinic and within the scanner.

The remainder of this paper is organized as follows: Section 2 introduces
PET imaging and its computational demands, followed by a discussion on how
to match those using cluster computing in Section 3. Section 4 then presents
the graphical programming environment used within this work and Section 5
provides details about the implementation of the PET reconstruction algorithm
within this environment. The performance of the system is then evaluated in
Section 6. The paper is rounded up by some concluding remarks and a brief
outlook in Section 7.

2 Nuclear Medical Imaging Using PET

Positron Emission Tomography is a nuclear medicine technique which allows to
measure quantitative activity distributions in vivo. It is based on the tracer prin-
ciple: A biological substance, for instance sugar or a receptor ligand, is labeled
with a positron emitter and a small amount is injected intravenously. Thus,
it is possible to measure functional parameters, such as glucose metabolism,
blood flow or receptor density. During radioactive decay, a positron is emitted,
which annihilates with an electron. This process results in two collinear high
energy gamma rays. The simultaneous detection of these gamma rays defines



Meeting the Computational Demands of Nuclear Medical Imaging 29

lines-of-response along which the decay occurred. Typically, a positron tomo-
graph consists of several detector rings covering an axial volume of 10 to 16
cm. The individual detectors are very small, since their size defines the spatial
resolution. The raw data are the line integrals of the activity distribution along
the lines-of-response. They are stored in matrices (sinograms) according to their
angle and distance from the tomograph’s center. Therefore, each detector plane
corresponds to one sinogram. Image reconstruction algorithms are designed to
retrieve the original activity distribution from the measured line integrals. From
each sinogram, a transverse image is reconstructed, with the group of all images
representing the data volume.

Ignoring the measurement of noise leads to the classical filtered backprojec-
tion (FBP) algorithm [3]. Reconstruction with FBP is done in two steps: Each
projection is convolved with a shift invariant kernel to emphasize small struc-
tures but reduce frequencies above a certain limit. Typically, a Hamming filter is
used for PET reconstruction. Then the filtered projection value is redistributed
uniformly along the straight line. This approach has several disadvantages: Due
to the filtering step it yields negative values, particular if the data is noisy, al-
though intensity is known to be non-negative. Also the method causes streak
artifacts and high frequency noise is accentuated during the filtering step.

Iterative methods were introduced to overcome the disadvantages of FBP.
They are based on the discrete nature of data and try to improve image quality
step by step after starting with an estimate. It is possible to incorporate physical
phenomena such as scatter or attenuation directly into the models. On the down
side, however, these iterative methods are very computational intensive. For
a long time, this was the major drawback for clinical use of these methods,
although they yield improved image quality.

One of the steps in iterative image reconstruction is the projection of mea-
sured PET data, just as in FBP. Expectation Maximization (EM) algorithms,
however, forward project the images to compare the generated to the measured
data. The result of this comparison is used to continually update the estimation
of the image. The vector to update the image is calculated by using Poisson
variables modeling the pixel emissions. With the Likelihood Function, an image
is estimated for which the measured PET data would have been most likely to
occur.

Following scheme shows one iteration step of an Expectation Maximization
(EM) algorithm:

1. Estimation of distribution
2. Forward-projection
3. Compare estimated projection with measured projection
4. End loop when error estimate under predefined value
5. Back-projection of error estimate
6. New estimation of distribution

Since this method converges very slowly, this iteration step has to be per-
formed many times (e.g. 100) for each pixel in each plane to converge. To re-
duce the number of iterations, a “divide and conquer” strategy is used. With



30 W. Karl et al.

OSEM (Ordered Subset Expectation Maximization) [4] the events registered by
the PET-scanner are divided into subsets. In one OSEM-iteration the typical
steps of projection and back projection are done for each of theses subsets. The
start-value for an iteration for each subset is gained from the result of the back
projection of the previous subset. With ordering the subsets in a way that there is
a maximum of information between each of them, the speed is further improved.
Still, due to the iterative nature a substantial amount of time is required for the
reconstruction of one image plane.

3 Meeting the Computational Demands with the Help of
Clusters

In order to meet these computational demands for PET image reconstruction
and still keep the total reconstruction time at an acceptable level, it is neces-
sary to apply parallel processing. It is not only suited to speed-up the iterative
reconstruction, but is also likely to guarantee image reconstruction times useful
for a semi real–time, on–line diagnosis of a patients PET scan results while the
patient is still within the PET scanner. This increases the medical accuracy as
scans can easily be repeated without extra scanner time and therefore shortens
the turnaround time for medical treatment. A typical upper bound for the re-
construction of a PET image that allows such guarantees is about four to five
minutes.

An architecture well suited for this endeavor are clusters of commodity PCs.
They provide an excellent price/performance ratio, are easy to build and main-
tain, and easily scalable to match the concrete computational demands. They
are already used in many real–world application scenarios, including Nuclear
Medical Imaging [7]. The main problem connected with this approach, however,
is their difficult programmability. The most common programming approaches
for clusters are based on message passing libraries, like MPI [6] or PVM [1]. With
these libraries, however, the user is forced to a very low–level style of program-
ming and is required to take care of additional tasks including the partitioning
of code and data, the mapping of code onto individual nodes within the clus-
ter, and the complete communication setup and management. This introduces a
significant amount of additional complexity, which is not related to the concrete
problem.

In order to make cluster architectures attractive to users not especially
trained in parallel processing, a different programming environment has to be
provided at a much higher level of abstraction. Such an environment has to be
capable to hide the implementation complexity of the underlying architecture
without sacrificing performance and/or functionality.

4 Easing the Programmability Using a Visual Approach

In order to establish such an environment for the implementation of the PET im-
age reconstruction, discussed in this work, a graphical tool, called PeakWare [8],



Meeting the Computational Demands of Nuclear Medical Imaging 31

is used. This tool was originally developed by Matra Systems & Information for
real-time multiprocessor systems and has been adopted for Windows 2000 based
clusters within the NEPHEW project. It completely hides the implementation
of the communication framework from the user by automatically generating it
from a graphical representation. This includes any startup procedures, notifica-
tion mechanisms, as well as the actual data transport itself. The user only has
to code the actual application functionality and PeakWare then automatically
combines the individual parts into a full application.

Any development in PeakWare is generally done in five steps. First the ap-
plication has to be decomposed into individual functional units, called modules,
one of the central concepts of PeakWare. The separation into modules has to be
done in a way that all communication between them can cleanly be specified in
the form of a data flow graph.

The information gained through this analysis is then used to graphically de-
scribe the communication behavior in the so called software graph. An example
with two modules and bidirectional communication is shown in Figure 1. Peak-
Ware also offers the ability to scale individual modules, i.e. to replicate and
distribute them among the cluster. This concept offers an easy way to introduce
data parallelism into an application and allows the easy scaling to potentially
arbitrary numbers of nodes.

Fig. 1. PeakWare software graph (simple ping-pong communication)

Each module consists of several functions with the global communication
channels as input and output arguments. The implementation of the functions
themselves is done in external source files using conventional sequential program-
ming in C. In the final application, these functions are then triggered automat-
ically by PeakWare at corresponding communication events without requiring
any further user intervention. This has to be seen in contrast to typical message
passing models which require explicit receive calls and an explicit binding of
incoming messages to their processing functions within the code.

The next step is the definition of the hardware that is supposed to be used
for the application. This is again done with a graphical description, the hardware
graph. An example of such a graph can be seen in Figure 2. It shows a small
cluster of two compute and one host node connected by Fast Ethernet. This con-
cept of an independent hardware graph enables the user to change the hardware
in terms of node description and/or number of nodes without requiring changes
in the software graph or the application itself.



32 W. Karl et al.

Fig. 2. PeakWare hardware graph (2 node cluster, with external development host)

Once the hard- and software graph have been completed, PeakWare gives
the user the option to specify a mapping between modules (from the software
graph) and nodes (as specified in the hardware graph). This mapping defines
which module is executed on which node and hence represents the connection
between the two graphs. It also allows the easy retargeting of applications to new
hardware configurations as well as simple mechanisms for static load balancing.

The last step, after the mapping has been done and all routines have been
implemented in external source files, is the code generation. In this process Peak-
Ware uses the information from the graphical description of the software and
hardware graphs and generates C source code that includes all communication
and data distribution primitives. This code can then be compiled with conven-
tional compilers resulting in a final executable and a shell script to start the
application on all specified nodes.

5 PET Image Reconstruction Using PeakWare

Due to their regular data layout, the decomposition for the PET image recon-
struction can be achieved in a quite straightforward manner. Each input volume
consists of a number of image planes (typically 47 or 63 per scan, depending
on the scanner type). The reconstruction for each of these planes can be done
independently. Therefore, a parallelization at the granularity of individual image
planes is most promising.

This basic scheme was implemented in PeakWare using three different mod-
ules: a sender-module reads the raw input data and distributes the read image
planes to a scaled consumer module in a round-robin fashion, one plane at a
time. The consumer performs the actual reconstruction and after its completion
forwards the resulting data to a receiver module, which is responsible for storing
the final image. In addition the sender is informed, that a subsequent plane can
be sent. The sender distributes the planes of the image until the reconstruction
of all image planes has been acknowledged by the receiver. If no planes are left,
planes might be resubmitted to idle consumers resulting in an easy, yet efficient
fault tolerance scheme with respect to the consumer modules.

The software graph based on this design is depicted in Figure 3. It shows
the three modules, with the consumer module scaled to $(SCALE) instances.



Meeting the Computational Demands of Nuclear Medical Imaging 33

Fig. 3. Software graph for the PET reconstruction application.

In addition, the main data paths form the sender through the consumer to the
receiver is visible in the middle augmented by two acknowledgment paths leading
back to the sender.

The software-graph with its three modules can be mapped onto arbitrary
hardware graphs. This enables the easy distribution of consumer module in-
stances across arbitrarily scaled clusters. It is also possible to change the number
of nodes without changing the software-graph by simply remapping it to a dif-
ferent hardware-graph. This independence of hardware and software description
drastically eases the port of application between different hardware configura-
tion and allows for an easy-to-handle scalability for the PET reconstruction
application without the need for any code modifications.

6 Experimental Setup and Results

For the evaluation of the approach presented here, a research cluster consisting
of four equally configured Dual processor PC nodes has been used. Each node is
based on Intel’s Xeon processors running at 450 MHz and is equipped with 512
MB main memory each. The interconnection fabric between the nodes is based
on switched Fast Ethernet, which is used for both the external connection to
the campus backbone, as well as for inter–node communication during the PET
image reconstruction. All nodes run Windows 2000 enhanced only by a separate
remote shell daemon.

For the evaluation, two different data sets have been used: one small data
set of a human lung and one large data set of a whole human body. While the
first one is acquired with a single scan, the latter resembles several consecutive
scans of the different body sections, which are then merged into one full image.
The complete size and resolution data for both data sets is shown in Table 1 and
some examples of resulting image slices for the whole body case are shown in
Figure 4. These two sets represent the two extreme cases of data sets currently
available in the clinical routine. With improving scanner quality and availability
of increased processing power, however, the trend is certainly towards larger data
set sizes.



34 W. Karl et al.

Fig. 4. Reconstructed and post–processed images of a human body (coronal slices,
Nuklearmedizin TUM).

Description Parameters Execution times
Size Planes Scan Res. Image Res. Scans Seq. 4 CPUs 8 CPUs

Human lung 14 MB 31 256x192 128x128 1 2m 54s s 1m 13s 1m 2s
Whole body 130 MB 282 256x192 128x128 6 15m 41s 4m 41s 3m 0s

Table 1. Evaluation data sets and the absolut exection times in various configurations

Table 1 also includes the absolute execution times of the code using the
two data sets on various numbers of CPUs and Figure 5 (left) shows the same
data transformed into speed-ups over the runtime time of a sequential execution
without PeakWare involved. While the smaller data set performs rather purely,
not exceeding a speed-up of 2.8 on 8 CPUs, the larger data set exhibits a much
better performance with a speed-up of over 5.2. More important for the usability
of the system in daily clinical routine is that the absolute execution times for
any data set does not exceed the 3 minutes on 8 CPUs. This is short enough
to allow a medical diagnosis based on a scan while the patient is still inside the
PET scanner. Scans can therefore be repeated or adjusted to new target areas
immediately without having to reschedule the patient for additional scans.

For a closer evaluation of the performance details, Figure 5 (middle and right)
shows the aggregated absolute execution times over all CPUs in a breakdown
into the different program phases: the startup time needed by the PeakWare
environment to launch the program on all nodes, the file I/O time needed to
read the initial data set and to store the final image volume, the time spent
in the communication subroutines, and the time needed for the actual image
reconstruction. The latter one is further broken down in a phase called Weights,
a sequential preprocessing step, and Rekon the execution of the iterative recon-
struction process. In this kind of graph bars of equal heights indicate perfect
scalability, as the total execution time or work spent on any number of nodes is



Meeting the Computational Demands of Nuclear Medical Imaging 35

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
Number of CPUs

S
p

e
e
d

-U
p

Ideal
whole body
human lung

0

100

200

300

400

500

600

Seq. 4 CPUs 8 CPUs

Rekon

Comm

Weights

File I/O

Startup

0

200

400

600

800

1000

1200

1400

1600

Seq. 4 CPUs 8 CPUs

Fig. 5. Speedup (left) and Aggregated execution times (in sec) — middle: data set
human lung, right: data set whole body.

equal showing that no additional overhead is introduced during the paralleliza-
tion.

This behavior is clearly visible for the actual reconstruction phase for both
data sets. In the small data set, however, where the total execution time on
larger number of nodes is dominated by the sequential and therefore not scalable
phases of the code, especially the preprocessing phase Weights, the overall speed-
up is severely limited. In the case of the larger data set, the reconstruction time
clearly outweighs any other phase, which translated into the high speed-up values
shown above. It can be noted, however, that with increasing data set sizes, the
I/O phase becomes more relevant demanding a new parallel I/O solution for the
future with even larger data sets envisioned.

7 Conclusions and Future work

Nuclear imaging using Positron Emission Tomography is establishing itself as
an important and very useful method for medical diagnosis. It is, however, con-
nected with large computational demands for the image preparation. In order to
match those, parallel processing is required and clusters built from commodity
components provide a very cost–effective platform for this application domain.
The problem connected with this approach is its complex and cumbersome pro-
grammability, making it difficult for scientists to use them at their full capacity.

In order to overcome this problem, the approach presented here deploys a
graphical tool, which allows the specification of independent modules along with
the communication between them. This raises the level of abstraction signif-
icantly and therefore eases the implementation process. The result is a very
efficient and easy–to–implement and –use PET image reconstruction system,
which satisfies the requirements for a use in daily clinical routine. It is already
used in a production environment and has found acceptance with both doctors
and medical personnel.

Based on this success, the approach is likely to be widened to more appli-
cations within the domain of nuclear medical imaging, like the spectral analysis



36 W. Karl et al.

for the evaluation of tracer concentrations in the human body over time and
the correlation of PET images to guarantee a clean overlay. In addition, further
optimizations can be made in the area of parallel I/O to provide more scalability
in this phase and by applying modern high–speed interconnection technologies
for applications with a high communication demand. All this will lead to an in-
tegrated cluster based solution of image processing of nuclear medical data and
will allow easier, faster, and more accurate utilization of this rising field within
medicine.

Acknowledgments

This work was supported by the European Commission in the Fourth Framework
Programme in the context of the ESPRIT Project 29907, NEPHEW (NEtwork
of PCs HEterogeneous Windows-NT Engineering Toolset). The reconstruction
algorithms have been implemented at the University of Michigan by Prof. Fessler
and are distributed in the form of a library, called ASPIRE [2].

References

1. A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. A User’ s Guide
to PVM Parallel Virtual Machine. Oak Ridge National Laboratory, Oak Ridge, TN
37831-8083, July 1991.

2. J. Fessler. Aspire 3.0 user’s guide: A sparse iterative reconstruction library. Technical
Report TR–95–293, Communications & Signal Processing Laboratory, Department
of Electrical Engineering and Computer Science, The University of Michigan Ann
Arbor, Michigan 48109-2122, November 2000. Revised version.

3. G.T. Herman. Image Reconstruction from Projections. Springer-Verlag, Berlin Hei-
delberg New York, 1979.

4. H. Hudson and R. Larkin. Accelerated image reconstruction using ordered subsets
of projection data. IEEE Transactions on Medical Imaging, 13:601–609, 1994.

5. R. Leahy and C. Byrne. Recent developments in iterative image reconstruction for
PET and SPECT. IEEE Transactions on Nuclear Sciences, 19:257–260, 2000.

6. Message Passing Interface Forum (MPIF). MPI: A Message-Passing Interface
Standard. Technical Report, University of Tennessee, Knoxville, June 1995.
http://www.mpi-forum.org/.

7. S. Vollmar, M. Lercher, C. Knöss, C. Michael, K. Wienhard, and W. Heiss. BeeHive:
Cluster Reconstruction of 3-D PET Data in a Windows NT network using FORE. In
In proceedings of the Nuclear Science Symposium and Medical Imaging Conference,
October 2000.

8. WWW:. Peakware — Matra Systems & Information.
http://www.matra-msi.com/ang/savoir infor peakware d.htm, January 2000.

9. WWW:. SMiLE: Nephew (Esprit project 29907).
http://wwwbode.in.tum.de/Par/arch/smile/nephew, June 2000.


	Motivation
	Nuclear Medical Imaging Using PET
	Meeting the Computational Demands with the Help of Clusters
	Easing the Programmability Using a Visual Approach
	PET Image Reconstruction Using PeakWare
	Experimental Setup and Results
	Conclusions and Future work
	Acknowledgments
	References

