
V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 494–503, 2001.
© Springer-Verlag Berlin Heidelberg 2001

The Policy Machine for Security Policy Management

Vincent C. Hu, Deborah A. Frincke, and David F. Ferraiolo
National Institute of Standards and Technology, 100 Bureau Dr. Stop 8930 Gaithersburg

Maryland 20899-8930, USA
{vhu, dferraiolo}@nist.gov

Department of Computer Science of the University of Idaho, Moscow Idaho 83844, USA
frincke@cs.uidaho.edu

Abstract. Many different access control policies and models have been devel-
oped to suit a variety of goals; these include Role-Based Access Control, One-
directional Information Flow, Chinese Wall, Clark-Wilson, N-person Con-
trol, and DAC, in addition to more informal ad hoc policies. While each of
these policies has a particular area of strength, the notational differences be-
tween these policies are substantial. As a result it is difficult to combine them,
both in making formal statements about systems which are based on differing
models and in using more than one access control policy model within a given
system. Thus, there is a need for a unifying formalism which is general enough
to encompass a range of these policies and models. In this paper, we propose an
open security architecture called the Policy Machine (PM) that would meet this
need. We also provide examples showing how the PM specifies and enforces
access control polices.

1 Introduction

Access control is a critical component of most approaches to providing system secu-
rity. Access control is used to achieve three primary objectives: (1), determining
which subjects are entitled to have access to which objects (Authorization); (2) deter-
mining the access rights permitted (a combination of access modes such as read, write,
execute, delete, and append); and (3) enforcing the access rights. An access control
policy describes how to achieve these three goals; to be effective, this policy needs to
be managed and enforced. There is a vast array of techniques that define and enforce
access control policies within host operating systems and across heterogeneous bodies
of data [NCSC98]. Although these techniques are successful in the specific situations
for which they were developed, the current state of security technology has, to some
extent, failed to address the needs of all systems [Spencer et al99, HGPS99] in a single
notation. Access control policies can be as diverse as the applications that rely upon
them, and are heavily dependent on the needs of a particular environment. Further,
notations that easily express one collection of access control policies may be awkward
(or incapable) in another venue. An example of this situation would be when a com-
pany’s documents are under One-direction Information Flow [BL73, Biba77,
Sand93] policy control at the development stage. When the development is finished,

The Policy Machine for Security Policy Management 495

the documents that are available for use by employees, could then be required to be
controlled by a role-based or RBAC [FCK95, SCFY96] policy. Most existing com-
mercial technologies used to provide security to systems are restricted to a single pol-
icy model, rather than permitting a variety of models to be used [Spencer et al99]. For
instance, Linux applies a DAC [NCSC87] policy, and it is difficult to implement
RBAC policy (among others) in such a system. Further, if an organization decides to
change from one policy model to another, it is quite likely that the new policy model
will have to be implemented above the operating systems level, perhaps even as part
of the application code or through an intermediary. This is inconvenient, subject to
error, slow, and makes it difficult to identify or model the overall “policy” that is
enforced by the system.

To meet this challenge, we have developed the Policy Machine (PM). The under-
lying concept of the PM relies on the separation of the access control mechanism from
the access control policy [JSS97, JSSB97]. This enables enforcement of multiple ac-
cess control policies within a single, unified system. Although complete policy cover-
age is an elusive goal, the PM is capable of expressing a broad spectrum of well-
known access control policies. Those we have tested so far include: One-directional
Information Flow, Chinese Wall [BNCW89], N-person Control [NCSC91] and
DAC. These were selected partly because they are so well known, and partly because
they differ greatly from one another. A further advantage of PM is that it is highly
extensible, since it can be augmented with any new policy that a specific application
or user may require. This paper will demonstrate the functionalities of PM, and illus-
trate PM’s universal, compositional and combinational properties.

2 Policy Machine (PM)

In this section we describe our design of PM, and explain how we achieve our goal of
a unified description and enforcement of policies. Our design of PM is related to the
traditional reference monitor approach. A reference monitor is not necessarily a
single piece of code that controls all accesses; rather, it is an abstraction or model of
the collection of access controls [Ande72]. As we have applied the concept, PM does
not dictate requirements for particular types of subject or object attributes nor the
relationships of these attributes within its abstract database. Because of this generality
PM can be used to model the implementation of a wide variety of access control poli-
cies, but PM is not itself a policy.

The structure of PM is based on the concept that all enforcement can be funda-
mentally characterized as either static (e.g., BBAC), dynamic (e.g., Work Flow), or
historical (e.g., Chinese Wall) [GGF98, SZ97]. In the next five sections, we introduce
the primary components of the PM: the Policy Engine (PE) with PE databases and the
security policy operations, which is the General Policy Operations (GPO). We then
discuss the Universal and Composition properties of the PM following each introduc-
tion.

496 V.C. Hu, D.A. Frincke, and D.F. Ferraiolo

2.1 Policy Engine (PE)

The task of the PE is to receive access requests and determine whether they should be
permitted. Access requests are of the form <User Identity, Requested Operations,
Requested Objects>. To determine the acceptability of a request, the PE executes three
separate phases (Figure 1): the request management phase, the subject-object media-
tion phase, and the access history recording and database management phase to deter-
mine whether access is granted or denied. The request management phase is primarily
used to assign the requesting user to a subject. The subject-object mediation phase is
used to decide if the subject is permitted to access the requested object. The access
history recording and database management phase determines if the granted access
will affect the state of the PM if a historical policy is implemented.

Matching
User Set
found?

Assign a Subject
for the User

Has privilege
for the
object?

Match found
in

History db?

Record in
History db

Update Relation/
Constraints db

Access Permitted

Access Denied

Combined PM
Mediation?

Yes

No

Yes

Yes

No

No

No
Yes

Request Management Phase

Subject-Object Mediation
Phase

Access History Recording
And Database
Management

Phase

User Access Request

Generate User
Access Request

Fig. 1. PM phases

Request Management Phase (RMp)
This phase is activated by the detection of a user request. The PE responds by creating
a subject along with operation, and object specified within the user’s request. For
example, consider the following request:
 (Mary; write; a_file) i.e., user Mary wants to write to a_file.

Currently, the Relations database (Rdb) has entries as follow:
 Managers = (Mary), Programmers = (Managers, Bob, Sue) i.e., the Man-

agers user set contains user Mary, and user set Programmers contains user set Man-
agers and users Bob and Sue.
Thus, user Mary is assigned as:
 subject = (Mary, Managers, Programmers); write; a_file

and is able to continue to the next phase.

The Policy Machine for Security Policy Management 497

Subject-Object Mediation Phase (SOMp)
The SOMp takes the input (subject, operations and object) created by the RMp, and the
process authorizes access under two conditions. First, there is a match of the subject’s
request and there is an entry in the Privilege database (Pdb). In this case, the re-
quested access is authorized. Second, there exists no further subject-object mediation
check that is required under a different PM. For example, assume that, in the SOMp,
PE generated the following message when in the RMp:

subject = (Mary, Managers, Programmers); write; a_file
The SOMp will then check Pdb, and find entries:

(Programmers; all; a_file)
This means that the Programmers user set has all privileges to the file a_file. There-
fore the request

subject = (Mary, Managers, Programmers); write; a_file
is authorized.

Access History Recording and Database Management Phase (AHRDMp)
This phase evaluates the relevance of the authorized event with respect to the history-
based policies that are stored in the History Based Relations database (HBRdb). His-
tory-based policies are driven by an event and an action stored in the HBRdb. If the
event received matches events stored in the HBRdb then PE in AHRDMp invokes the
action associated with the event. The action either creates new constraints in the Con-
straints database (Cdb), and/or updates relations in the Pdb. Consistency is checked
whenever a relation or constraint is created. For example, HBRdb contains an entry:

 event = (subject_a; all; x_file), response = (Generate Constraints =
(((subject_a; all; y_file) ª (*:*:*)), ((subject_a; all;z_file) ª (*:*:*)); Cdb)
This means that subject_a is prohibited from any kind of access (by excluding (ª) all
(*)) to y_file and z_file if x_file has been accessed by subject_a. Entries for the con-
straints will be added into the Cdb. This example can be used for policies that require
SOD constrains, such as Chinese Wall [BNCW89] policies.

2.1.1 PE Databases

PE databases provide relation, privilege, constraint, and history information for PE
processes. The databases are maintained either by GPO or by the AHRDMp. In this
section, we will describe each of the four types of databases.

Relations database (Rdb) maintains the inheritance relations between sets. For exam-
ple, Rdb is used in the RMp to establish the active user set(s) of a subject. An example
is in Figure 2.

498 V.C. Hu, D.A. Frincke, and D.F. Ferraiolo

M a n a g e r s

T e s t e r s

E n g i n e e r s

B o b

P r o g r a m m e r s

S u e

M a r y

J o h n

A n nL e o

M a n a g e r s = (M a r y)
E n g i n e e r s = (J o h n , M a n a g e r s)
P r o g r a m m e r s = (M a n a g e r s , B o b , S u e)
T e s t e r s = (A n n , L e o , E n g i n e e r s)

Fig. 2. Set Relations database example

Constraints database (Cdb) contains constraint relations of subject (sets), object
(sets), and operation(s). It is used by RMp as a reference to establish a subject from a
user’s access request. An example entry:

 (SS1; P1; OS1), (SS2; P2; OS2) i.e., The combination of subject (sets) SS1, op-

eration(s) P1 and object (sets) OS1,and the combination of subject (sets) SS2, opera-

tion(s) P2 and object (sets) OS2 are mutually excluded.

Privilege database (Pdb) is accessed by SOMp for searching the subject (sets), opera-
tion(s) and object (sets) relations. A relation in Pdb defines the privilege for the sub-
ject (sets). An example of Pdb entry is:

 Programmers; read, write, execute; file_a i.e., subject set Programmers can
read, write, and execute file_a.
History Based Relations database (HBRdb) contains information, which is used in the
AHRDMp to perform state transaction of a historical-related policy embedded in the
database with the structure:
 sti, Event, Actions, stj, where sti is the current state of the embedded historical

access control policies, Event is an authorized access :(subject (sets), operation(s),
object (sets)). Actions are sets of actions (a1…..an), each ai = (dbname, Updates),
where the database dbname is the name of one of the Cdb or Pdb will be updated with
the information in Updates. stj is the next historical state PM will be when the Event

occurred.

2.1.2 Universal Property

PM can support most major access models, making it a possible to express the corre-
sponding access control policies that these models represent. In order to reduce the
support needed to express a multitude of models, we take advantage of previous work
which has shown that certain model categories may be simulated or represented by
other model categories. For instance, Sandhu has shown in [Sand93] that Lattice-
based access control models such as the Bell-Lapadula model [BL73] and Biba
model [Biba77] may simulate Information Flow polices (including MAC policies)

The Policy Machine for Security Policy Management 499

and Chinese Wall policies. In PM, Lattices are represented by a set implemented by
data records in a database and embedded in the PE’s Rdb as described in section 2.1.1
Rdb. The relations of the elements of the Lattices are checked in RMp as described in
section 2.1 RMp. This allows us to describe a wide variety of models with a minimum
of PM features.

As a second example, PM maintains records for access events and updates data-
bases to reflect changes of the states caused by the events according to the historical
policy states that are embedded in HRBdb. As indicated in section 2.1.1 HRBd, the
historical related policy is implemented by a table structure of a database, the process
in the AHRDMp tracks the historical state of the policy by referring the information in
the table as described in section 2.1 AHRDMp. Therefore, policy models which can be
mapped to state transition machine models can also modeled by PM; this allows us to
support Clark Wilson [CWAC87] and N-person Control policy models, for exam-
ple.

Gligor, Gavrila and Ferraiolo [GGF98] showed that SOD policies can be enforced
either statically or dynamically. We can use either method by employing PE’s Cdb as
described in section 2.1.1 statically and dynamically. The static Cdb constrains rela-
tions between subjects, objects and/or operations, and provides the tool for statically
separating users of their privileges. The dynamic Cdb can be generated by the process
of AHRDMp according to the actions stored in the historical policy database and can
separate the users’ privileges dynamically. Therefore, through the Cdb the PM is able
to enforce policy models which require either static or dynamic SOD. These policies
include Work Flow [AH96] and RBAC.

DAC access control policy can be achieved by appropriately managing the Pdb ta-
bles associated with each user. The Pdb table for each user should be set as a con-
trolled object of the administrator’s PE. These users will then have sole and total
control of their own Pdb table, thereby allowing them to delegate the access privilege
to other users.

Although a formal proof of correspondence is beyond the scope of this paper, the
above paragraphs indicate how the properties and components of PM allow PM to
model some major access control models.

2.2 General Policy Operations (GPO)

GPO is a set of operations for expressing access control policies. It allows users to
specify, together with the authorizations, the policy according to which access control
decisions are to be made. GPO has the following components: Basic sets define the
basic elements and sets for the GPO. Database query functions represent restrictions
or relationships between elements. Administrative operations are used for the admini-
stration of the PM databases. Rules are used to keep the transitions in the states of PM
during the system operation.

Basic Sets
A set of basic sets, defines the users, objects, operations and their relations.

500 V.C. Hu, D.A. Frincke, and D.F. Ferraiolo

Examples:
 US = the set of user sets, (US1, ……, USn).

 USi = the set of users, (u1, …, un), where each user is assigned to user set USi.

Database Query Functions
There are three types of database query functions:
1. Set query functions, for retrieving relations from Rdb. Examples:

 member_of (s) denotes the members of set s (s is inherited by the members).
 set_of (m) denotes the sets the member m is assigned to (inherit from).

 transitive_member_of (s) denotes the transitive members of set s.
 transitive_set_of (m) denotes the transitive sets the member m belongs to.
2. Constraint query functions, for retrieving constrains from Cdb. Examples:

 userSet_constrained (s) denotes the constraint relations of the user (set) s.
 objectSet_constrained (o) denotes the constraint relations of the object (set) o.
 userSet_permitted (s) denotes the permitted relations related to the user (set) s.
 objectSet_permitted (o) denotes the permitted relations of the object (set) o.

3. Process mapping functions, for retrieving information of current process. Examples:
 operation_request (u) denotes the operation requested by user u.
 object_request (u) denotes the object requested by user u.
 subject_of (u) denotes the subject associated with user u.
 active_userSets (s) denotes the set of active user(sets) associated with subject s.
 access(s,p,o) return 1 if subject s is authorized to access object o by operation p.

Administrative Operations
A set of administrative commands. Examples:

 addMember (x, y), rmMember (x, y), new member x is added/removed to set y in
Rdb.

 addConstraints(c), rmConstraintse(c), constraints c is added/removed to Cdb
database.

 addRelations(c), rmRelations(c) , relation c is added/removed to Pdb.

Rules
The rules represent assumptions about the GPO. Examples:

 The member assigned to a given set is exactly the member directly inheriting the
given set in Rdb, and the sets assigned to a given member are exactly the sets directly
inherited by the member in Rdb.

 Any two user sets assigned to a third user set do not inherit (directly or indi-
rectly) one another in Rdb.

2.2.1 PM Composition

The Administration Operations of GPO allow users of PM to interact with PM; they
are used to add, remove, and update a PE database entry. Before an Administration

The Policy Machine for Security Policy Management 501

Operation is executed, GPO will invoke the Database Query Functions built in the
GPO to retrieve information required for the operation. GPO will then check the vali-
dation of the logics and formats governed by the GPO’s Rules. The Rules of GPO
guarantee the consistencies of the relations, constraints and privileges of the informa-
tion stored in the PE databases.

Some of the functions for well-known access control policies can be built in the
GPO. Through the Administration Operations, PM users/administrators can imple-
ment and manage an access control policy. For example, to add a relation for users in
a Separation of Duty (SOD) policy, PM administrators can execute the command:

AddSODusers (x, y), i.e., add separation of duty (mutual exclusive) relation for us-
ers x and users y.

The Administrative Operations are a key feature of GPO, since they provide the
PM administrator a tool for composing new access control policies. Through the
GPO’s Rule, the information stored in the PE database can be generated and modified
without PM administrators having any known access control policy in mind.

The composition capability of GPO supports the important feature of PM that sepa-
rates the security policies from the security mechanisms.

2.3 PM Combination

A key feature of PM is its ability to combine policies. Policies are established in dif-
ferent PMs by implementing their databases and GPOs. When policies are combined,
PMs are essentially “chained together”. In practice, this means that a “User Request”
begins at the “first” PM, and it is passed along to subsequent PMs for examination.
Each PM will in turn examine its own state of completion (i.e., ability to decide if
there is enough information to process the request). If it has not reached a state of
completion, it will pass the token as an input to the next PM (see Figure 3).

An object can be constrained under more than one policy, for example, a user may
get past the MAC policy check, but may still need to be authorized again by other
policies say, RBAC for allowing the requested operation to the object. For example,
the sequence of checks could be: Can the user read secret information, is the user a
doctor, is the patient assigned to the doctor for the operation/procedure.

502 V.C. Hu, D.A. Frincke, and D.F. Ferraiolo

U s e r R e q u e s t
(u , O p s , O b j s)

P M nP M 1

Y e s / N o

U s e r S e t
A c t i v a t i o n

S u b j - O b j
M e d i a t i o n

H i s t o r y P o l i c y
F i l t r a t i o n

U s e r S e t
A c t i v a t i o n

S u b j - O b j
M e d i a t i o n

H i s t o r y P o l i c y
F i l t r a t i o n

Fig. 3. PM combination

3 Conclusions

In this paper, we have demonstrated the concept of constructing universal policy ar-
chitecture without detailed and formal specification. The issue of formal specification
will be the subject of our planned future research. PM functions are executed through
sequential phases (as described in Section 2) without recursive operations in the PM
functions; therefore it is computable in polynomial time. Since PM’s database is al-
ways consistent (no conflict mapping of relations), users’ access requests are handled
conclusively; that is, they are either authorized or denied.

PM has significant theoretical and practical implications; it is an architecture that is
capable of implementing virtually any access control policy. It also helps to promote
interoperability and the use of innovative tools for policy generation and visualization
that can be built on top of existing access control primitives and scaled to the largest
virtual enterprise.

References

[AH96] Atluri V., Huang W., “An Authorization Model for Workflows”. Proceedings of the
Fifth European Symposium on Research in Computer Security in Lecture Notes in Computer
Science, No 1146, September 1996.
[Ande72] Anderson J. P., "Computer Security Technology Planning Study," ESD_TR_73-51,
Vol. 1, Hanscom AFB, Mass., 1972.
[Bark97] Barkley J., "Comparing Simple Role Based Access Control Models and Access Con-
trol Lists", Proceedings of the Second ACM Workshop on Role-Based Access Control, Novem-
ber 1997, page 127-132.
[Biba77] Biba K. J., "Integrity Considerations for Secure Computer Systems," ESD-TR-76-372,
USAF Electronic Systems Division, Bedford, Mass., April 1977.

The Policy Machine for Security Policy Management 503

[BL73] Bell D.E., and Lapadula L. J., "Secure Computer Systems: Mathematical Foundations
and Model," M74-244, MITRE Corp., Bedford, Mass., 1973.
[BNCW89] Brewer, D., Nash, M. "The Chinese Wall Security Policy." Proc IEEE Symp Secu-
rity & Privacy, IEEE Comp Soc Press, 1989, pp 206-214.
[CW87] Clark D. D., and Wilson D. R., "A Comparison of Commercial and Military Security
Policies," Proc. of the 1987 IEEE Symposium on Security and Privacy, Oakland, California,
1987, pp.184-194
[CWEO89] Clark D. D., and Wilson D. R., "Evolution of a Model for Computer Integrity",
NIST Special Publication 500-168, Appendix A, September 1989
[FCK95] Ferraiolo D. F., Cugini J. A., Kuhn D. R., "Role-Based Access Control (RBAC):
Features and Motivations", Proc. of the 11th Annual Conference on Computer Security Applica-
tions. IEEE Computer Society Press, Los Alamitos, CA. 1995. [GGF98] Gligor V. D., Gavrila
S. I., Ferraiolo D., "On the Formal Definition of Separation-of-Duty Policies and their Compo-
sition", In IEEE Symposium on Computer Security and Privacy, April 1998.
[HGPS99] Hale J., Galiasso P., Papa M., Shenoi S., "Security Policy Coordination for Hetero-
geneous Information Systems", Proc. 15th Annual Computer Security Applications Conference,
Applied Computer Security Associates, December 1999.
[ISW97] Irvine C. E., Stemp R., Warren D. F., "Teaching Introductory Computer Security at a
Department of Defense University", Naval Postgraduate School Monterey, California, NPS-
CS-97-002, April 1997
[JSS97] Jajodia S., Samarati P., and Subrahmanian V. S., ‘‘A Logical Language for Expressing
Authorizations,’’ Proc. IEEE Symp, Oakland, Calif., May 1997.
[JSSB97] Jajodia S., Sammarati P., Subrahmanian V. S., and Bertino E., "A Unified Frame
Work for Enforcing Multiple Access Control Policies", Proc. ACM SIGMOD Conf. On Man-
agement of Data, Tucson, AZ, May 1997.
[NCSC87] National Computer Security Center (NCSC). "A GUIDE TO UNDERSTANDING
DISCRETIONARY ACCESS CONTROL IN TRUSTED SYSTEM", Report NSCD-TG-003
Version1, 30 September 1987.
[NCSC91] National Computer Security Center, "Integrity in Automated information System", C
Technical Report 79-91, Library No. S237,254, September 1991.
[NCSC98] National Computer Security Center, "1998 Evaluated Products List", Washington,
D.C., U.S. Government Printing Office.
[Sand93] Sandhu R. S., "Lattice-Based Access Control Models", IEEE Computer, Volume 26,
Number 11, November 1993, page 9-19.
[SCFY96] Sandhu R. S., Coyne E. J., Feinstein H. L., and Youman C. E., "Role-Based Access
Control Models", IEEE Computer, Volume 29, Number 2, February 1996, page 38-47.
[Spencer et al99] Spencer R., Smalley S., Loscocco P., Hibler M., Andersen D., and Lepreau J.,
"The Flask Security Architecture: System Support for Diverse Security Policies",
http://www.cs.utah.edu/fluz/flask, July 1999.
[SZ97] Simon R.T., and Zurko M. E., "Separation of Duty in Role-Based Environments," Proc.
of the Computer Security Foundations Workshop X, Rockport, Massachusetts, June 1997.

	1 Introduction
	2 Policy Machine (PM)
	2.1 Policy Engine (PE)
	2.1.1 PE Databases
	2.1.2 Universal Property
	2.2 General Policy Operations (GPO)
	2.2.1 PM Composition
	2.3 PM Combination
	3 Conclusions
	References

