
A Cache Simulator for Shared Memory Systems

Florian Schintke, Jens Simon, and Alexander Reinefeld

Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
{schintke,simon,ar}@zib.de

Abstract. Due to the increasing gap between processor speed and mem-
ory access time, a large fraction of a program’s execution time is spent
in accesses to the various levels in the memory hierarchy. Hence, cache-
aware programming is of prime importance. For efficiently utilizing the
memory subsystem, many architecture-specific characteristics must be
taken into account: cache size, replacement strategy, access latency, num-
ber of memory levels, etc.
In this paper, we present a simulator for the accurate performance pre-
diction of sequential and parallel programs on shared memory systems. It
assists the programmer in locating the critical parts of the code that have
the greatest impact on the overall performance. Our simulator is based
on the Latency-of-Data-Access Model, that focuses on the modeling of
the access times to different memory levels.
We describe the design of our simulator, its configuration and its usage
in an example application.

1 Introduction

It is a well-known fact that, over the past few decades, the processor performance
has been increased much faster than the performance of the main memory. The
resulting gap between processor speed and memory access time still grows at a
rate of approximately 40% per year. The common solution to this problem is to
introduce a hierarchy of memories with larger cache sizes and more sophisticated
replacement strategies. At the top level, a very fast L1 cache is located near
the CPU to speed up the memory accesses. Its short physical distance to the
processor and its fast, more expensive design reduces the access latency if the
data is found in the cache.

With the increasing number of memory levels, it becomes more important to
optimize programs for temporal and spatial locality. Applications with a good
locality in their memory accesses benefit most from the caches, because the
higher hit rate reduces the average waiting time and stalls in arithmetic units.

In practice, it is often difficult to achieve optimal memory access locality,
because of complex hardware characteristics and dynamic cache access patterns
which are not known a priori. Hence, for a realistic cache simulation, two things
are needed: a hardware description with an emphasis on the memory subsystem
and the memory access pattern of the program code.

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 569–578, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



570 F. Schintke, J. Simon, and A. Reinefeld

We have designed and implemented a simulator that is based on the Latency-
of-Data-Access Model described in the next section. The simulator is execution-
driven, i.e. it is triggered by function calls to the simulator in the target appli-
cation. It determines a runtime profile by accumulating the access latencies to
specified memory areas.

2 The Latency-of-Data-Access Model

The Latency-of-Data-Access (LDA) model [9] can be used to predict the exe-
cution characteristics of an application on a sequential or parallel architecture.
It is based on the observation that the computation performance is dominated
(and also strictly limited) by the speed of the memory system.

Fig. 1. Concept of the LDA model.

In LDA, data movements are modeled by direct memory accesses to the
various levels in the memory hierarchy. The number of data movements combined
with the costs of computations provide an accurate estimate on the expected
runtime [9].

LDA models the execution of an application by a set of abstract instructions,
which are classified into arithmetic operations, flow control, and data movements
between the processing unit(s) and the memory system. The data movements
are considered to be issued from an explicit load/store unit with direct access
to each level of the memory hierarchy (see Fig. 1).

With this abstract model, complex protocols of today’s memory hierarchies
can be treated uniformly, while still giving very precise results. Cache misses
caused by a load operation in a real machine are modeled by a single access to
the next lower memory level that holds the data. This is done with the rationale
that the time taken by the initial cache miss is much shorter than the time
taken by the access to the next lower memory level. Hence, for each load/store
instruction, LDA uses the execution cost of that access to the specific memory
level.



A Cache Simulator for Shared Memory Systems 571

Note that the precise timing depends on the access pattern: Consecutive
memory accesses are much faster than random accesses. The LDA model reflects
these effects by adding different costs to the individual accesses.

3 The LDA Simulator

Our simulator [8] gets two sources of input: the configuration of the memory
architecture of the target machine, and the memory access pattern of the sim-
ulated program. The latter is obtained by manually inserting function calls to
the simulator in the program source code.

We have verified the accuracy of our simulator by comparing simulated data
to the timing of practical execution runs.

In the following sections we describe the features and architecture of the
simulator in more detail and explain its usage with a simple example.

3.1 Features

The LDA simulator can be used to optimize programs, but also to help in the
design of the memory hierarchy of a processor. It can be compiled on any system
with a standard C++ compiler. The simulated architecture is independent of the
computer that the simulator runs on.

The simulator shows the currently accumulated execution time in every time
step of the simulation. It is also possible to get the number of memory accesses
for a specific memory level.

The simulator allows to split the costs for user-specified memory areas to
different cost accounts. With this feature, the execution time on subsets of the
address space can be monitored (Sec. 4), which is useful for, e.g., optimizing the
data structure for better cache usage.

3.2 Architecture

Figure 2 shows the simulator’s architecture described in the Unified Modeling
Language UML [5]. The actual implementation has been done with the C++
programming language. The simulator consists of two main parts:

– The classes MachineDef, Protocol, CacheDef, RStrategy, and WStrategy
describe the static architecture of a memory hierarchy.

– The classes Caches, CacheLevel, and Cacheline describe the dynamic part.
Their behavior depends on the static description.

The classes Caches, Cachelevel, and Cacheline determine which memory
levels are accessed for each memory operation and then update their internal
counters for calculating the execution time. For this purpose, it is necessary to
simulate the behavior of the cache levels and to determine the currently cached
addresses.

The user interface is defined in the two classes MachineDef and Caches.



572 F. Schintke, J. Simon, and A. Reinefeld

Fig. 2. UML class diagram of the simulator showing the software architecture of the
simulator.

The simulator is execution-driven and the target source code must be instru-
mented by manually inserting function calls into the program. By the approach
not to use an executable editing library like EEL [1], the user has the burden
to modify the source code on the one hand, but on the other hand, it allows
him to focus on the most relevant parts in the application, e.g. program kernels.
Simulation overhead has only to be added where really necessary. An example
of an instrumented program code is shown in Fig. 4.

3.3 Configuration

At startup time, a configuration file is read by the simulator that contains the
static specification of the memory architecture. Many different architectures can
be specified in the same configuration file and can be referenced by a symbolic
name. With this feature, several system architectures can be simulated in the
same run.

Memory hierarchies of arbitrary depths and sizes may be defined, thereby
also allowing to simulate hierarchical shared memory systems. For each memory
level, there may be different settings for

– the number of blocks,
– the block size,
– the associativity,
– the replacement strategy,
– the write strategy, and
– the read and write latency.



A Cache Simulator for Shared Memory Systems 573

for (i = 0; i < matrixSize; i++)
for (j = 0; j < matrixSize; j++)

for (k = 0; k < matrixSize; k++)
c[i][j] += a[i][k] * b[k][j];

Fig. 3. Memory access pattern of an unblocked matrix-matrix multiplication and its
implementation (with C memory layout).

For the input configuration file, the hardware characteristics of the target ar-
chitectures can be obtained either from the technical manuals of the system or by
running a suite of microbenchmarks. For configurable systems, only microbench-
marks can be used to determine the actual configuration. In our experiments we
used the method of McVoy and Staelin [3]. It measures the memory hierarchy
characteristics by enforcing strided accesses to memory blocks of different sizes.
Their scheme determines the cache size, the latency and the block size for each
memory level.

However, some of the characteristics can not be determined by microbench-
marks. This is true for the cache associativity, the write strategy (write through
or write back), and the replacement strategy (LRU, FIFO, random, . . .) which
must be specified manually.

4 Example

In this section, we illustrate the use of the simulator with an unblocked matrix-
matrix multiplication on a single and an SMP multiprocessor system.

4.1 Matrix Multiplication on a Single Processor

As an example we have simulated the matrix-matrix multiplication A ∗ B = C.
Figure 3 depicts the default memory layout of the matrices. The two-dimensional
memory blocks of matrices A and C are mapped to the linear address space of the
computer by storing them line by line. Hence, the system accesses the elements of
A and C with consecutive memory accesses, resulting in a good spatial locality.
The accesses to matrix B, however, occur strided over the memory. The lower
spatial locality of matrix B slows down the whole computation.



574 F. Schintke, J. Simon, and A. Reinefeld

for (i = 0; i < matrixSize; i++)
for (j = 0; j < matrixSize; j++)
{

for (k = 0; k < matrixSize; k++)
{

caches.load(&a[i][k] - offset, 4);
caches.load(&b[k][j] - offset, 4);
caches.doFloatOps(2);

}
caches.store(&c[i][j] - offset, 4);

}

Fig. 4. Instrumented code for the matrix-matrix multiplication.

Temporal locality is given only in the accesses to the result matrix C. The
temporal locality increases with growing matrix size (Fig. 6).

In preparation of the simulation, all load and store operations must be
searched in the source code and function calls to the simulator must be in-
serted. Figure 4 shows the instrumented code. Note that the function calls to
the simulator caches.load, caches.store expect the (one-dimensional) array
address and the data size as parameters.

In practice, the elements c[i][j] of the result matrix are stored only once to
the main memory. Hence in the simulation we can save CPU time by moving
the data assignment out of the inner loop as shown in Fig. 4.

1

10

100

10 100 1000T
im

e 
fo

r 
M

ul
tip

ly
−

A
dd

−
O

pe
ra

tio
n 

(c
yc

le
s)

Matrix size (n)

IBM RS/6000 simulated
IBM RS/6000 measured

Fig. 5. Measured and simulated execution times of the matrix-matrix multiplication
for different matrix sizes.



A Cache Simulator for Shared Memory Systems 575

0.01

0.1

1

10

100

1000

10 100 1000T
im

e 
fo

r 
M

ul
tip

ly
−

A
dd

−
O

pe
ra

tio
n 

(c
yc

le
s)

Matrix size (n)

IBM RS/6000 simulated
Accesses to matrix A
Accesses to matrix B
Accesses to matrix C

Fig. 6. Split-down of the execution times for each matrix involved in the multiplication.

4.2 Single Processor Results

Figure 5 shows the measured and simulated execution times of the matrix multi-
plication for different matrix sizes. In theory, we would expect an O(n3) execution
time, corresponding to a horizontal line in Fig. 5. In practice, the actual growth
rate is not cubical, because of the memory hierarchy.

As can be seen in Fig. 5, our simulation closely matches the real execution
time. The prediction is slightly more optimistic, because the simulator does not
include side effects of the operating system like task switching and interrupts. In
real life these effects invalidate a part of the cache and thereby produce additional
overhead.

Figure 6 gives a more detailed view. It shows the access time for each single
matrix. This data has been determined by counting the accesses to matrix A,
B, and C separately. As can be seen now, for the small matrix sizes, matrix A
and B are both stored in the first level cache. When the matrices get bigger,
matrix B falls out of the cache, while A is still in. This is caused by the layout
of matrix B in the memory, which does not support spatial access locality.

The locality of matrix B can be improved by storing it in the transposed
form, giving a similar access pattern for both source matrices, A and B. Each
of them takes about half of the cache capacity. Figure 7 shows the simulation
results for this improved memory layout.

Another interesting observation in Fig. 6 is the fact that the accesses to
matrix C seem to become faster with increasing matrix size. This is due to
the increasing number of computations that are done in the inner loop before
storing a result element in matrix C. A sudden jump in the graph occurs only



576 F. Schintke, J. Simon, and A. Reinefeld

0.01

0.1

1

10

100

10 100 1000T
im

e 
fo

r 
M

ul
tip

ly
−

A
dd

−
O

pe
ra

tio
n 

(c
yc

le
s)

Matrix size (n)

IBM RS/6000 simulated
Accesses to matrix A

Accesses to transposed matrix B
Accesses to matrix C

Fig. 7. Simulation of the optimized matrix multiplication with transposed matrix B.

when matrix C grows to such an extend that it cannot be completely contained
in the cache.

4.3 Matrix Multiplication on an SMP

We have also simulated the matrix multiplication for a dual Pentium III proces-
sor system with 16 kB L1 and 256 kB L2 cache. Figure 8 gives the results of two
versions of the algorithm, an alternating distribution where one processor com-
putes all even and the other computes all odd matrix elements, and a blocked
distribution where each processor computes a half consecutive block of matrix
C. Clearly the blocked version is faster due to lower memory contention.

The memory contention has been simulated by including a simulation of the
Pentium’s MESI consistency protocol into the simulator. Note that this does not
only simulate cache conflicts but also contention on the system bus.

5 Related Work

Several other simulators for caches exist, but they don’t use the LDA model for
their analysis and have another focus. Some of them are limited in the number of
supported memory levels, others aim at simulating different hardware features.

The Linux Memory Simulator (limes) [2] has been designed for simulating
SMP systems. It has been developed by modifying a compiler backend to gen-
erate instrumented code. This approach limits the flexibility of instrumentation
and it also depends very much on the specific compiler. This execution-driven
simulator is able to analyze parallel programs on a single host processor by
creating threads for each target system.



A Cache Simulator for Shared Memory Systems 577

10

20

30

40

10 100 1000T
im

e 
fo

r 
M

ul
tip

ly
−

A
dd

−
O

pe
ra

tio
n 

(c
yc

le
s)

Matrix size (n)

alternating distribution
blocked distribution

Fig. 8. Simulated execution times of the matrix multiplication on a dual processor
SMP system.

The Rice Simulator for ILP Multiprocessors (RSIM) [6] has been designed
with an emphasis on simulating instruction level parallelism. With this level
of details, the internal processor behavior can be simulated more precisely, but
at the cost of a higher simulation runtime. The Wisconsin Wind Tunnel II [4]
in contrast tries to reduce the simulation time by executing instructions of the
target machine in parallel on some host processors.

For analyzing new cache architectures the Multi Lateral Cache Simulator
(mlcache) was developed [10]. It is used, for example to simulate cache that are
split into temporal and spatial parts [7]. The depth of the memory hierarchy is
limited to only a few levels.

6 Conclusion

We have presented a generic execution-driven simulator for the accurate predic-
tion of memory accesses based on the Latency-of-Data-Access Model [9]. This
model is motivated by the observation that the computation speed of modern
computers is dominated by the access time to the various memory levels.

The simulator can be used to simulate a wide variety of target platforms.
This is done with a configuration file that describes the memory characteris-
tics in terms of the number of memory levels, cache sizes, access latency, and
replacement strategy.

The simulator is triggered by the execution of the program, which must be
instrumented manually before runtime. This allows the user to focus on the im-
portant code modules, e.g., the most time-consuming kernels. With the example
of a matrix multiplication, we have shown how to use the simulator for deriving



578 F. Schintke, J. Simon, and A. Reinefeld

better implementations for a given machine. The simulator indicates which data
structure should be changed to optimize the code.

Moreover, the simulator is flexible enough to allow the simulation of com-
plex cache coherency schemes that are used in SMPs. As an example, we have
implemented the MESI protocol of the Pentium III. The results of our simu-
lation of a dual processor Pentium lies within 10% of the measured execution
time, thereby proving that the LDA model also properly reflects the impact of
memory contention in SMP systems. In a similar way, the LDA simulator could
be used to analyze different network infrastructure and protocols for distributed
shared memory systems.

The simulator is open source under the GNU General Public License and is
available at http://www.zib.de/schintke/ldasim/.

References

1. James R. Larus and and Eric Schnarr. EEL: Machine-independent executable
editing. In Proceedings of the SIGPLAN’95 Conference on Programming Language
Design and Implementation, pages 291–300, 1995.

2. Davor Magdic. Limes: A multiprocessor environment for PC Platforms. In
IEEE Computer Society Technical Committee on Computer Architecture Newslet-
ter, March 1997.

3. Larry McVoy and Carl Staelin. lmbench: portable tools for performance analysis.
In USENIX 1996 Annual Technical Conference, January 22–26, 1996. San Diego,
CA, USA, pages 279–294, Berkeley, CA, USA, January 1996. USENIX.

4. Shubhendu S. Mukherjee, Steven K. Reinhardt, Babak Falsafi, Mike Litzkow,
Mark D. Hill, David A. Wood, Steven Huss-Lederman, and James R. Larus. Wis-
consin Wind Tunnel II: A fast, portable parallel architecture simulator. IEEE
Concurrency, 8(4):12–20, October/December 2000.

5. OMG. Unified Modeling Language Specification. Open Management Group, Ver-
sion 1.3 edition, June 1999.

6. Vijay S. Pai, Parthasarathy Ranganathan, and Serita V. Adve. RSIM: An
Execution-Driven Simulator for IPL-Based Shared-Memory Multiprocessors and
Uniprocessors. In IEEE Computer Society Technical Committee on Computer Ar-
chitecture Newsletter, March 1997.

7. M. Prvulović, D. Marinov, Z. Dimitrijević, and V. Milutinović. Split Tempo-
ral/Spatial Cache: A Survey and Reevaluation of Performance. In IEEE Computer
Society Technical Committee on Computer Architecture Newsletter, July 1999.

8. Florian Schintke. Ermittlung von Programmlaufzeiten anhand von Speicherzugrif-
fen, Microbenchmarks und Simulation von Speicherhierarchien. Technical Report
ZR-00-33, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), 2000.

9. Jens Simon and Jens-Michael Wierum. The Latency-of-Data-Access Model for
Analyzing Parallel Computation. Information Processing Letters, 66(5):255–261,
June 1998.

10. Edward Tam, Jude Rivers, Gary Tyson, and Edward S. Davidson. mlcache: A
flexible multi-lateral cache simulator. Technical Report CSE-TR-363-98, Computer
Science and Engineering, University of Michigan, May 1998.

http://www.zib.de/schintke/ldasim/

	Introduction
	The Latency-of-Data-Access Model
	The LDA Simulator
	Features
	Architecture
	Configuration

	Example
	Matrix Multiplication on a Single Processor
	Single Processor Results
	Matrix Multiplication on an SMP

	Related Work
	Conclusion

