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Abstract. We describe the Queuing Shared-Memory (QSM) and Bulk-
Synchronous Parallel (BSP) models of parallel computation. The former
is shared-memory and the latter is distributed-memory. Both models
use the ‘bulk-synchronous’ paradigm introduced by the BSP model. We
describe the relationship of these two models to each other and to the
‘LogP’ model, and give an overview of algorithmic results on these mod-
els.
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1 Introduction

An important goal in parallel processing is the development of general-purpose
parallel models and algorithms. However, this task has not been an easy one. The
challenge here has been to find the right balance between simplicity, accuracy
and broad applicability.

Most of the early work on parallel algorithm design has been on the simple
and influential Parallel Random Access Machine (PRAM) model (see e.g., [29]).
Most of the basic results on parallelism in algorithms for various fundamen-
tal problems were developed on this simple shared-memory model. However,
this model ignores completely the latency and bandwidth limitations of real
parallel machines, and it makes the unrealistic assumption of unit-time global
synchronization after every fine-grained parallel step in the computation. Hence
algorithms developed using the PRAM model typically do not map well to real
machines. In view of this, the design of general-purpose models of parallel com-
putation has been an important topic of study in recent years [3,5,6,7,10,13,15,
18,25,30,32,35,36,39,44]. However, due to the diversity of architectures among
parallel machines, this has also proved to be a very challenging task. The chal-
lenge here has been to find a model that is general enough to encompass the
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wide variety of parallel machines available, while retaining enough of the essen-
tial features of these diverse machines in order to serve as a reasonably faithful
model of them.

In this paper we describe the approach taken by the Queuing Shared-Memory
(QSM) model [22] and the Bulk-Synchronous Parallel (BSP) model [46]. The
former is shared-memory while the latter is distributed-memory. The two models
are distinguished by their use of bulk synchronization (which was proposed in
[46]).

Bulk-synchronization moves away from the costly overhead of the highly
synchronous PRAM models on one hand, and also away from the completely
asynchronous nature of actual machines, which makes the design of correct al-
gorithms highly nontrivial. The QSM and BSP are algorithmic/programming
models that provide coarse-grained synchronization in a manner that facilitates
the design of correct algorithms that achieve good performance.

In the following sections, we define the QSM and BSP models, and provide an
overview of known relationships between the models (and between both models
and the LogP model [14]) as well as some algorithmic results on these models.

2 Definitions of Models

In the following we review the definitions of the BSP [46], LogP [14], and QSM
[22] models. These models attempt to capture the key features of real machines
while retaining a reasonably high-level programming abstraction. Of these mod-
els, the QSM is the simplest because it has only 2 parameters and is shared-
memory, which is generally more convenient than message passing for develop-
ing parallel algorithms. On the other hand the LogP is more of a performance
evaluation model than a model for parallel algorithm design, but we include it
here since it is quite similar to the BSP model.

BSP Model. The Bulk-Synchronous Parallel (BSP) model [46,47] consists of
p processor/memory components that communicate by sending point-to-point
messages. The interconnection network supporting this communication is char-
acterized by a bandwidth parameter g and a latency parameter L. A BSP com-
putation consists of a sequence of “supersteps” separated by global synchro-
nizations. Within each superstep, each processor can send and receive messages
and perform local computation, subject to the constraint that messages are sent
based only on the state of the processor at the start of the superstep.

Let w be the maximum amount of local work performed by andy processor in
a given superstep and let h be the maximum number of messages sent or received
by any processor in the superstep; the BSP is said to route an h-relation in this
superstep. The cost, T , of the superstep is defined to be T = max(w, g · h, L).
The time taken by a BSP algorithm is the sum of the costs of the individual
supersteps in the algorithm.

The (d, x)-BSP [11] is similar to the BSP, but it also attempts to model
memory bank contention and delay in shared-memory systems. The (d, x)-BSP
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is parameterized by five parameters, p, g, L, d and x, where p, g and L are as
in the original BSP model, the delay d is the ‘gap’ parameter at the memory
banks, and the expansion x reflects the number of memory banks per processor
(i.e., there are x · p memory banks).

The computation of a (d, x)-BSP proceeds in supersteps similar to the BSP.
In a given superstep, let hs be the maximum number of read/write requests made
by any processor, and let hr be the maximum number of read/write requests to
any memory bank. Then the cost of the superstep is max(w, g · hs, d · hr, L),
where w is as in the BSP.

The original BSP can be viewed as a (d, x)-BSP with d = g and x = 1.

LogP Model. The LogP model [14] consists of p processor/memory compo-
nents communicating through point-to-point messages, and has the following
parameters: the latency l, which is the time taken by the network to transmit
a message from one to processor to another; an overhead o, which is the time
spend by a processor to transfer a message to or from the network interface,
during which time it cannot perform any other operation; the gap g, where a
processor can send or receive a message no faster than once every g units of
time; and a capacity constraint: whereby a receiving processor can have no more
than dl/ge messages in transit to it. If the number of messages in transit to a
destination processor π is dl/ge then a processor that needs to send a message
to π stalls, and does not perform any operation until the message can be sent.
The nonstalling LogP is the LogP model in which it is not allowed to have more
than dl/ge messages in transit to any processor.

QSM and s-QSM models. The Queuing Shared Memory (QSM) model [22]
consists of a number of identical processors, each with its own private memory,
that communicate by reading and writing shared memory. Processors execute a
sequence of synchronized phases, each consisting of an arbitrary interleaving of
shared memory reads, shared memory writes, and local computation. The value
returned by a shared-memory read can be used only in a subsequent phase.
Concurrent reads or writes (but not both) to the same shared-memory location
are permitted in a phase. In the case of multiple writers to a location x, an
arbitrary write to x succeeds in writing the value present in x at the end of the
phase. The maximum contention of a QSM phase is the maximum number of
processors reading or writing any given memory location. A phase with no reads
or writes is defined to have maximum contention one.

Consider a QSM phase with maximum contention κ. Let mop be the maxi-
mum number of local operations performed by any processor in this phase, and
let mrw be the maximum number of read/write requests issued by any proces-
sor. Then the time cost for the phase is max(mop, g · mrw, κ). The time of a
QSM algorithm is the sum of the time costs for its phases. The work of a QSM
algorithm is its processor-time product. Since the QSM model does not have
a latency parameter, the effect of latency can be incorporated into the perfor-
mance analysis by counting the number of phases in a QSM algorithm with the
goal to minimizing that number.
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The s-QSM (Symmetric QSM) is a QSM in which the time cost for a phase
is max(mop, g · mrw, g · κ), i.e., the gap parameter is applied to the accesses at
memory as well as to memory requests issued at processors.

The (g, d)-QSM is the most general version of the QSM. In the (g, d)-QSM,
the time cost of a phase is max(mop, g · mrw, d · κ), i.e., the gap parameter
g is applied to the memory requests issued at processors, and a different gap
parameter d is applied to accesses at memory. Note that the QSM is a (g, 1)-
QSM and an s-QSM is a (g, g)-QSM.

The special case of QSM and s-QSM where the gap parameter g equals 1, is
the QRQW PRAM [19], a precursor to the QSM.

3 Relationships between Models

Table 1 presents recent research results on work-preserving emulations between
QSM, BSP and LogP models [22,42,43].

An emulation of one model on another is work-preserving if the processor-
time bound on the emulating machine is the same as that on the machine being
emulated, to within a constant factor. The ratio of the running time on the
emulating machine to the running time on the emulated machine is the slowdown
of the emulation. Typically, the emulating machine has a smaller number of
processors and takes proportionately longer to execute. For instance, consider
the entry in Table 1 for the emulation of s-QSM on BSP. It states that there
is a randomized work-preserving emulation of s-QSM on BSP with a slowdown
of O(L/g + log p). This means that, given a p-processor s-QSM algorithm that
runs in time t (and hence with work w = p · t), the emulation algorithm will
map the p-processor s-QSM algorithm on to a p′-processor BSP, for any p′ ≤
p/((L/g) + log p), to run on the BSP in time t′ = O(t · (p/p′)) w.h.p. in p.

Table 1. All results are randomized and hold w.h.p. except those marked as ‘det.’,
which are deterministic emulations. These results are reported in [22,42,43]. Results
are also available for the (d, x)-BSP and (g, d)-QSM.

Slowdown of Work-Preserving Emulations between Parallel Models
Emulated Emulating Models
Models BSP LogP (stalling) s-QSM QSM
(p procs)

BSP log4 p + (L/g) log2 p d g log p
L

e d g log p
L

e
LogP (non-
stalling) L/l (det)1 1 (det.) d g log p

l
e d g log p

l
e

s-QSM (L/g) + log p log4 p + (l/g) log2 p 1 (det.)
QSM (L/g) + g log p log4 p + (l/g) log2 p + g · log p g (det.)

1
This result is presented in [9] but it is stated there erroneously that it holds for stalling LogP programs.

All emulations results listed in Table 1 are work-preserving, and the one
mis-match is between stalling and non-stalling LogP, and here we do not know
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how to provide a work-preserving emulation with small slow-down of a stalling
LogP on any of the other models. (Note that earlier it was stated erroneously in
Bilardi et al. [9] that LogP is essentially equivalent to BSP, but this was refuted
in Ramachandran et al. [43]).

This collection of work-preserving emulations with small slowdown between
the three models – BSP, LogP and QSM — suggests that these three models
are essentially interchangeable (except for the stalling versus nonstalling issue
for LogP) in terms of the relevance of algorithm design and analysis on these
models to real parallel machines.

4 Algorithms

QSM Algorithmic results. Efficient QSM algorithms for several basic prob-
lems follow from the following observations [22]. (An ‘EREW’ PRAM is the
PRAM model in which each shared-memory read or write has at most one ac-
cess to each memory location. A ‘QRQW’ PRAM [19] is the QSM model in
which the gap parameter has value 1.)

1. (Self-simulation) A QSM algorithm that runs in time t using p processors
can be made to run on a p′-processor QSM, where p′ < p, in time O(t ·p/p′),
i.e., while performing the same amount of work.

2. (EREW and QRQW algorithms on QSM)
(a) An EREW or QRQW PRAM algorithm that runs in time t with p proces-

sors is a QSM algorithm that runs in time at most t ·g with p processors.
(b) An EREW or QRQW PRAM algorithm in the work-time framework

that runs in time t while performing work w implies a QSM algorithm
that runs in time at most t · g with w/t processors.

3. (Simple lower bounds for QSM) Consider a QSM with gap parameter g.
(a) Any algorithm in which n distinct items need to be read from or written

into global memory must perform work Ω(n · g).
(b) Any algorithm that needs to perform a read or write on n distinct global

memory locations must perform work Ω(n · g).

There is a large collection of logarithmic time, linear work EREW and QRQW
PRAM algorithms available in the literature. By the second observation men-
tioned above these algorithms map on to the QSM with the time and work
both increased by a factor of g. By the third observation above the resulting
QSM algorithms are work-optimal (to within a constant factor). More generally,
by working with the QSM model we can leverage on the extensive algorithmic
results compiled for the PRAM model.

Some QSM algorithmic results for sorting and list ranking that focus on
reducing the number of phases are given in [43]. Related work on minimizing
the number of supersteps on a BSP using the notion of rounds is reported in
[23] for sorting, and in [12] for graph problems. Several lower bounds for the
number of phases needed for basic problems are presented in [34]. Some of these
lower bounds are given in Table 2. The ‘linear approximate compaction’ problem
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mentioned in Table 2 is a useful subroutine for load-balancing; a simple algorithm
for this problem on the QRQW PRAM (and hence the QSM) that improves on
the obvious logarithmic time algorithm is given in [20].

Table 2. Lower bounds for s-QSM [34]. ([34] also presents lower bounds for these
problems for QSM and BSP.)

problem Deterministic Randomized # of phases w/ p procs.
(n=size of input) time l.b. time l.b. and O(n) work/phase

Lin. approx. compaction Ω(g
√

log n
log log n

) Ω(g log log n) Ω(
√

log n
log(n/p) )

OR Ω( g log n
log log n

) Ω(g log∗ n) Ω( log n
log(n/p) )

†

Prefix sums, sorting Ω(g log n)† Ω( g log n
log log n

) Ω( log n
log(n/p) )

†

†This bound is tight since there is an algorithm that achieves this bound.

Some experimental results are presented in [24]. In this paper, the QSM
algorithms for prefix sums, list ranking and sorting given in [43] were examined
experimentally to evaluate the trade-offs made by the simplicity of the QSM
model. The results in [24] indicate that analysis under the QSM model yields
quite accurate results for reasonable input sizes.

BSP Algorithmic Results. By the emulation results of the previous section,
any QSM algorithm can be mapped on to the BSP to run with equal efficiency
and only a small slow-down (with high probability). Thus, all of the results
obtained for QSM are effective algorithms for the BSP as well. Additionally,
there has been a considerable amount of work on algorithms design for the
BSP model. For instance, sorting and related problems are considered in [17,
23], list and graph problems are considered in [12], matrix multiplication and
linear algebra problems are considered in [17,46,37], algorithms for dynamic data
structures are considered in [8], to cite just a few.
LogP Algorithmic Results. Some basic algorithms for LogP are given in [14].
LogP algorithms for summing and broadcasting are analyzed in great detail in
[28]. Several empirical results on performance evaluation of sorting and other
algorithms are reported in the literature. However, there are not many other
results on design and analysis of LogP algorithms. This appears to be due to
the asynchronous nature of the model, and the capacity constraint requirement,
which is quite stringent, especially in the nonstalling LogP.
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