
Parallel Bridging Models and Their Impact on
Algorithm Design?

Friedhelm Meyer auf der Heide and Rolf Wanka

Dept. of Mathematics and Computer Science and Heinz Nixdorf Institute, Paderborn University,
33095 Paderborn, Germany. Email: {fmadh|wanka}@upb.de

Abstract. The aim of this paper is to demonstrate the impact of features of parallel
computation models on the design of efficient parallel algorithms. For this purpose,
we start with considering Valiant’s BSP model and design an optimal multisearch
algorithm. For a realistic extension of this model which takes the critical blocksize
into account, namely the BSP* model due to Bäumker, Dittrich, and Meyer auf
der Heide, this algorithm is far from optimal. We show how the critical blocksize
can be taken into account by presenting a modified multisearch algorithm which is
optimal in the BSP* model. Similarly, we consider the D-BSP model due to de la
Torre and Kruskal which extends BSP by introducing a way to measure locality of
communication. Its influence on algorithm design is demonstrated by considering
the broadcast problem. Finally, we explain how our Paderborn University BSP
(PUB) Library incorporates such BSP extensions.

1 Introduction

The theory of efficient parallel algorithms is very successful in developing new algorith-
mic ideas and analytical techniques to design and analyze efficient parallel algorithms.
The Parallel Random Access Machine model (PRAM model) has proven to be very
convenient for this purpose. On the other hand, the PRAM cost model (mis-)guides the
algorithm designer to exploit a huge communication volume, and to use it in a fine-
grained fashion. This happens because the PRAM cost model charges the same cost for
computation and communication. In real parallel machines, however, communication
is much more expensive than computation, and the cost for computation differs from
machine to machine. Thus, it might happen that two algorithms for the same problem are
incomparable in the sense that one is faster on machine A, the other is faster on machine
B.

To overcome these problems, several proposals for so-called parallel bridging models
have been developed: for example, the BSP model [16], the LogP model [6], the CGM
model [7], and the QSM model [1].

A bridging model aims to meet the following goals: Its cost measure should guide
the algorithm designer to develop efficient algorithms. It should be detailed enough
to allow an accurate prediction of the algorithms’ performance. It ought to provide an
environment independent from a specific architecture and technology, yet reflecting the

? Partially supported by DFG SFB 376 “Massively Parallel Computation” and by the IST pro-
gramme of the EU under contract number IST-1999-14186 (ALCOM-FT).

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 628–637, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Parallel Bridging Models and Their Impact on Algorithm Design 629

most important constraints of existing machines. This environment should also make
it possible to write real portable programs that can be executed efficiently on various
machines.

Valiant’s BSP model [16] (Bulk Synchronous model of Parallel computing) is in-
tended to bridge the gap between software and hardware needs in parallel computing.
In this model, a parallel computer has three parameters that govern the runtime of algo-
rithms: The number of processors, the latency, and the gap.

The aim of this paper is to demonstrate the impact of features of the bridging model
used on the design of efficient algorithms. For this purpose, in Section 2, after a detailed
description of the (plain) BSP model, we present an efficient algorithm for the multisearch
problem. Then, in Section 3, we explain that it is sometimes worthwhile to consider
additional parameters of the parallel machine. Examples for such parameters are the
critical block size and the locality function of the machine. The effect of the critical
block size is demonstrated by presenting a multisearch algorithm that is efficient also
if the critical block size is considered. The benefit of taking the locality into account is
shown by presenting an efficient algorithm for the broadcast problem. In Section 4, we
report on the implementation of the PUB Lib, the Paderborn BSP Library.

2 The Plain BSP Model

The PRAM model is one of the most widely used parallel computation models in the-
oretical computer science. It consists of a number of sequential computers that have
access to a shared memory of unlimited size. In every time step of a PRAM’s com-
putation, a processor may read from or write into a shared memory location, or it can
perform a single local step. So it charges one time unit both for an internal step, and for
accessing the shared memory though these tasks seem to be quite different. The PRAM
model is very comfortable for algorithm design because it abstracts from communica-
tion bottlenecks like bandwidth and latency. However, this often leads to the design of
communication intensive algorithms that usually show bad performance if implemented
on an actual parallel computer. In order to overcome this mismatch between model and
actual machine, Valiant identified some abstract parameters of parallel machines that
enable algorithm designer to charge different cost for the different tasks, without to be
committed to a special parallel computer, but with a hopefully reliable prediction of the
algorithms’ performance. It is called the BSP model and discussed next.

2.1 Definition

A BSP machine is a parallel computer that consists of p processors, each processor having
its local memory. The processors are interconnected via an interconnection mechanism
(see Fig. 1(a)).

Algorithms on a BSP machine proceed in supersteps (see Fig. 1(b)).We describe what
happens in a superstep from the point of view of processor Pi: When a new superstep
t starts, all µi,t messages sent to Pi during the previous superstep are available at Pi.
Pi performs some local computation, or work, that takes time wi,t and creates λi,t new
messages that are put into the interconnection mechanism, but cannot be received during

630 F. Meyer auf der Heide and R. Wanka

…

Interconnection Mechanism

M
em

or
y

Pro
ce

sso
r

PP P1 2 p

(a)

t

P P PP P

L

1 2 3 4 p

w

w

T
im

e

…

(b)

Su
pe

rs
te

p
Su

pe
rs

te
p

 +
 1

t
t

t +1

tg · h

tg · h +1

…
…

…
… L

Fig. 1. (a) A BSP computer and (b) the execution of a BSP algorithm.

the current superstep. Let hi,t = max{µi,t,λi,t}. This superstep is finished by executing a
barrier synchronization. Summarizing over all processors, we introduce the parameters
wt = maxi wi,t and ht = maxi hi,t. If an algorithm performs T supersteps, we use
W =

∑
1≤t≤T wt and H =

∑
1≤t≤T ht. W is called the local work of the algorithm,

H its communication volume. Note that the size of the packets sent is not taken into
account. In the course of analyzing a BSP algorithm, the task is to determine concrete
values for T , H , and W .

The actual time that a BSP machine needs to execute the above BSP algorithm de-
pends on the following machine parameters: L, the latency, and g, the gap, or bandwidth
inefficiency. L is the maximum time that a message sent from a processor Pi needs to
reach processor Pj , taken over all i and j. Likewise, L is also the time necessary for a
single synchronization. Every processor can put a new packet into the interconnection
mechanism after g units of time have been elapsed. Concrete values of g and L can
be measured by experiments. For a different platforms catalogue, see [14]. The third
machine parameter is p, the number of processors, or the size of the machine.

Hence, the runtime of the tth superstep is (at most) wt + g ·ht +L, and the overall
runtime is (at most) W +g ·H +L ·T .

Note that we consider sums of times although it is often sufficient to only consider
the maximum of the involved times when, e. g., pipelining can be used. This only results
in a constant factor-deviation, whereas it simplifies many analyses considerably.

Let Tseq be the runtime of a best sequential algorithm known for a problem. Ideally,
we are seeking BSP algorithms for this problem where W = c ·Tseq/p, L ·T = o(Tseq/p),
and g ·H = o(Tseq/p), for a small constant c ≥ 1. Such algorithms are called c-optimal.
There are two popular ways to represent results of a BSP analysis. First, values of T , H ,
and W are given. For example, see Theorem 1 below. The other way is to state (with n
denoting the input size) for which ranges of n/p, g, and L the algorithm is 1-optimal.
Theorem 2 concluded from Theorem 1 is presented in this way.

Parallel Bridging Models and Their Impact on Algorithm Design 631

2.2 An Example: The Multisearch Problem

As an instructive example, we outline an efficient BSP algorithm for the Multisearch
Problem. Let U be a universe of objects, and Σ = {σ1, . . . ,σm} a partition of U into
segments σi ⊆ U . The segments are ordered, in the sense that, for every q ∈ U and
segment si, it can be determined (in constant time) whether q ∈ σ1 ∪·· ·∪σi−1, or q ∈ σi,
or q ∈ σi+1 ∪·· ·∪σm. In the (m,n)-multisearch problem, the goal is to determine, for
n objects (called queries) q1, . . . , qn from U , their respective segments. Also the queries
are ordered, but we are not allowed to conclude from q ∈ σi that q′ ∈ σj , for any pair
i, j. Such problems arise in the context of algorithms in Computational Geometry (e. g.,
see Fig. 2).

q

s1 s s s2 3 m…
q

q1
2q 3

4

nq
U

…

Fig. 2. A multisearch instance from Computational Geometry. Note that q3 and q4 are in different
relative orderings with respect to each other and their respective segments.

For simplicity, we assume that m = dc for some constant c and that the segments
are given in the form of a complete d-ary search tree T of height logd m+1. d will be
determined later. Every leaf represents a segment, the leftmost leaf σ1, the rightmost
σm. Every inner node contains d−1 copies (called splitters) of the segments that split
all its leaves into equally-sized intervals. A query q takes a path from the root (on level
0) of T to its respective leaf (on level logd m). In every inner node, it can be decided in
time O(logd) by a binary search on the splitters to which child one has to go to resume
the search.

In a seminal paper [13], Reif/Sen introduced a randomized PRAM algorithm that
solves any (O(n),n)-multisearch instance on n processors in time O(logn), with high
probability (w. h. p.), no shared memory cell being accessed at the same step more than
once. A direct adaptation of this algorithm to the BSP model yields T = W = H =
O(logn) which is far away from being optimal in the sense discussed above.

In the BSP setting, the parallel solution for the multisearch problem has to accomplish
the following two tasks: (i) Mapping. In a preprocessing step, the nodes of T are mapped
to the processors of the BSP machine. (ii) Parallel multisearch. After (i), the search for
the segments of the n queries is performed in parallel.

The BSP algorithm works quite simple from a high-level point of view. The queries
are distributed among the processors. Initially, they are all assigned to the root of T , and
they all must travel from the root to the correct leaf. In round t, it is determined for every
query that is assigned to a node on level t−1 to which node on level t it has to go, so
the number of rounds is logd m. As it turns out, the number of supersteps per round can
be constant for a proper choice of d and a broad range for the BSP parameters.

The crucial task of this algorithm is the way of how the information to which node
v of T which is stored in some processor Pi query q has to go meets q which is stored
in some processor Pj . Should v be sent to Pj , or should q be sent to Pi? We shall see
that answering this question individually for pairs (q,v) is the main step in the design
of an efficient BSP algorithm.

632 F. Meyer auf der Heide and R. Wanka

Two kinds of hot spots can emerge that, unfortunately, are not addressed in a PRAM
setting. The first kind can happen at a processor: There can be many nodes stored in a
single processor that will be accessed in one round, either by receiving queries, or by
sending their information away. There is a surprisingly simple way to tackle this problem.
As for the mapping used in our plain BSP algorithm, we assume that the Θ(m) nodes of
T are mapped randomly to the processors. The important observation for this mapping
is: If m ≥ p logp, every processor manages (1+o(1)) ·m/p nodes, with high probability.
We shall see in the next section that this mapping cannot avoid some problems if the
so-called critical block size is considered as an additional parameter. However, for the
time being, this simple way of mapping avoids hot spots at the processors. Of course
we shall avoid sending requested information more than once. This is the aim of the
solution of the problems arising from the second kind of hot spots.

Namely, the other kind of hot spots can emerge at nodes of T . There can be nodes
which lie on the paths of many queries from the nodes to the leaves. E. g., the root is on
the path of every query, and, hence, a hot spot. The idea is to handle the case that many
paths go through a nodes differently from the other case.

This distinction and separate handling is the impact of the BSP model on the design
of an efficient BSP algorithm for the multisearch problem.

For a node v, let J(v) be the set of queries that go through v. J(v) is called the job
of v. J(v) is called a large job, if |J(v)| > r, otherwise, it is called a small job. For our
purposes, it is sufficient to choose r = (n/p)1−ε for some ε, 0 < ε < 1.

Let v1, . . . ,vdt be the nodes on level t of T . Let the jobs be distributed among the
processors as shown in Figure 3. For small jobs J(vi), J(vi) is sent to the processor that

J v()1 J v()2 J v()
d t

P P Pp1 2

Fig. 3. Distribution of the jobs.

manages node vi where the nodes of the next level are computed by binary search. This
can be done easily.

Large jobs J(vi) are handled differently because we want to avoid to send too many
queries to one processor. Here the strategy is to first distribute J(vi) evenly on a group
of consecutive processors such that at most n/p queries are on each of these processors.
Then the group’s first processor receives the management information, i. e., the splitters,
from the processor that manages vi and broadcasts it to the rest of the group. This routine
can be implemented by using integer sorting and a segmented parallel prefix for which
efficient BSP algorithms have to be used. The development of such algorithms is a very
interesting work in its own right, but for our purposes it suffices to state the following
theorem. Its proof can be found in [2,3]. Note that a simple consideration shows that in
the case of small jobs, it can be bad to send many ‘large’ nodes to the presumably many
small jobs on a single processor.

Theorem 1. Let Tbin(x,y) denote the sequential worst case time for x binary searches
on a sequence of y segments. Let c ≥ 1, 1 < k < p and d = o((n/p)1/c).

Parallel Bridging Models and Their Impact on Algorithm Design 633

The multisearch algorithm presented above performs n searches on a d-ary tree of
depth δ in time δ · (W +g ·H +T ·L), w.h.p., with

W = (1+o(1)) ·Tbin(n/p,d)+O(k · ((n/p)1/c + c+logk p)) ,

H = O(c · (n/p)1/c +k · logk p) ,

T = O(c+logk p) .

With Tbin(x,y) = O(x logy) and, therefore, Tseq = O(δ ·n/p · logd) one can com-
pute for which ranges of the machine parameters p, g and L the algorithm is 1-optimal.

Theorem 2. Let c ≥ 1 be an arbitrary constant and d = (n/p)1/c. Then the algorithm
solves the multisearch problem with n queries on a d-ary tree with depth δ = logd p in
runtime δ · (1+o(1)) ·Tbin(n/p,d) for the following parameter constellations:

– n/p = Ω((logp)c), g = o(log(n/p)), and L = o(n log(n/p)/(p logp)).
– n/p = Ω(pε), for any ε > 0, g = o(log(n/p)), and L = (n/p) · log(n/p).

3 Extensions of BSP

As mentioned in the introduction, the runtime computed with the BSP parameters should
allow an accurate prediction of the algorithms’ performance. However, quite often it can
be observed that the prediction and the actual performance of an implementation deviate
considerably despite a tight analysis. That means that at least in such cases, there are
properties of existing machines that influence the performance heavily, but that are not
visible in the BSP approach and therefore missing when algorithms are designed. In
this section, two such properties are identified and incorporated into the BSP model. For
both variations of the BSP model, we present algorithms that show the impact of the
changes in the model on the algorithm design.

3.1 BSP*: Critical Block Size and the Multisearch Problem Revisited

Observations of existing interconnection mechanisms of real machines show that it is
sometimes better to send large packets that contain many single information units than
sending all these units separately. But – as mentioned above – the size of messages
is not taken into account in the BSP model. In order to model this aspect, the critical
block size B has been introduced as additional parameter [2,8] resulting in the BSP*
model. B is the minimum number of information units a message must have in order
to fully exploit the bandwidth of the communication mechanism. This also leads to a
modified definition of the gap: Every processor can put a new packet of size B into the
communication mechanism after g∗ units of time have been elapsed.

Now for superstep t, we count how many messages ht are sent or received by a
single processor, and how many information units st are parceled in these messages.
For the runtime of the superstep, we charge wt + g∗ · (st +ht ·B)+L. Note that if ht

messages containing altogether st = ht · B information units are sent, the runtime is
wt +2g∗ ·st +L. If ht messages containing only st = ht information units are sent, the
runtime is wt + g∗ ·ht · (B +1)+L. That means that short messages are treated as if

634 F. Meyer auf der Heide and R. Wanka

they were of size B. The number T of supersteps and the local work W of an BSP*
algorithm are identical to those in the BSP model. Now, H =

∑
t ht is the number of

message start-ups, and the communication volume is S =
∑

t st. The total runtime of a
BSP* algorithm is W +g∗(S +B ·H)+T ·L.

Let HBSP denote the number of messages of a BSP algorithm. In a bad case, it
can be that every message contains only one information unit. That means the BSP*
runtime is W + g∗(1 + B) · HBSP + T · L. In this case, we are seeking for a new (or
modified) algorithm for the BSP* machine that communicates (about) the same amount
of information, but parceled into at most H = HBSP/B messages.

Indeed, the bad case mentioned above can occur in the BSP multisearch algorithm
presented in Subsection 2.2. For example, suppose a very large search tree T and few
queries that all belong to different leaves of T . If we run our BSP algorithm with a
random mapping of the nodes of T , there will be a level (i. e., round) t0, after that all
jobs have size 1 and, due to the good distribution property of a random mapping, all jobs
have to be sent from now on to different processors, w. h. p. That means that we cannot
create large messages to exploit the bandwidth of the communication mechanism, and
that almost all messages that have size 1 are charged with B. In fact, this computed
runtime comes in total much closer to the actual performance of this algorithm on many
real machines than the plain BSP runtime.

From the discussion above, it follows that the random mapping of the nodes of T
causes the problems. In the following, we shall describe a different mapping that enables
the algorithm also to parcel large messages after some critical level t0 of T as described
above has been reached. This mapping is the so-called z-mapping.

It is the impact of considering the critical block size in the BSP* model on the design
of an efficient algorithm for the multisearch problem.

Note that also adapted BSP* algorithms for integer sorting, segmented parallel prefix
and broadcast have to be designed and applied as subroutines.

Let z ≤ p. The z-mapping of the nodes of a d-ary tree T with δ +1 levels works
as follows, with t going from 0 through δ iteratively: On level t, t ≤ logd p, there are at
most p nodes which are randomly mapped to different processors. On level t, t > logd p,
there are more than p nodes. For every processor P , let R(P) be the subset of nodes in
level t−1 that has been mapped to P . All children of the nodes of R(P) are distributed
randomly among z randomly chosen processors.

In the random mapping, the children of R(P) can be spread evenly among all pro-
cessors, whereas in the z-mapping they are, so to speak, clustered to only z processors
where they are spread evenly.

Now we observe how the multisearch algorithm has to behave in the case of small
jobs if the z-mapping is applied. Large jobs are treated as before.

After the partition of jobs of level t-nodes has been completed, every small job J(v)
is stored in processor P that also stores v. P splits (by binary search) J(v) into the
jobs for the children nodes on level t+1. The z-mapping ensures that these children
are scattered only on at most z processors. Even if P has many small jobs, all children
nodes are distributed among at most z processors. So P can create z large messages.

Of course, this description can only put some intuition across the success of this
mapping. A detailed analysis of this algorithm [2,3] leads to the following theorem that
states when this algorithm is an optimal parallelization.

Parallel Bridging Models and Their Impact on Algorithm Design 635

Theorem 3. Let c ≥ 1 be an arbitrary constant and choose d = (n/p)1/c and let z =
ω(d logp). Let T be a d-ary tree with depth δ that has been mapped onto the processors
by using the z-mapping.

W. h. p., the runtime of the above algorithm is δ · (1 + o(1)) · Tbin(n/p,d), i. e. 1-
optimal, for the following parameter constellations:

– n/p = ω((log)c), g∗ = o(log(n/p)), B = o((n/p)1−1/c), and
L = o((n log(n/p)/(p logp)).

– n/p = Ω(pε), for an arbitrary constant ε > 0, g∗ = o(log(n/p)), B =
o((n/p)1−1/c), and L = (n/p) log(n/p).

3.2 D-BSP: Locality and the Broadcast Problem

Many parallel algorithms work in a recursive way, i. e., the parallel machine is split
into two or more independent parts, or sets of processors, where similar subproblems of
smaller size, have to be solved. It is often possible to partition a real parallel machine into
independent parts such that we can consider the latency and the gap as functions L(k)
and g(k), resp., of the size k of a set of processors because it can make sense that, e. g., the
latency on a small machine is much smaller than on a huge machine. In the decomposable
BSP machine model (D-BSP) introduced by de la Torre and Kruskal [15], in a step the
machine can be partitioned into two equally-sized submachines. This partitioning process
may be repeated on some submachines (i. e., submachines of different sizes are possible
simultaneously). In the D-BSP model, the runtime of a superstep on a single submachine
is wt +ht ·g(pt)+L(pt), with pt denoting the size of this submachine. The runtime of
a superstep is the maximum runtime taken over the submachines.

In the following, we present an algorithm for the broadcast problem that can easily
be implemented on the D-BSP machine. In the broadcast problem, processor P1 holds
an item α that has to be sent to the remaining p−1 processors.

An obvious plain BSP algorithm for this problem works in logp supersteps. In
superstep t, every processor Pi, 1 ≤ i ≤ 2t−1 sends α to processor Pi+2t (if this processor
exists). The BSP parameters are T = W = H = O(logp) so the BSP runtime is O(logp+
g · logp+L · logp).

For example, suppose the interconnection mechanism to be a hypercube with Gray
code numbering, guaranteeing L(2k) = O(k), and suppose g(2k) = O(1). Then the
runtime of the plain BSP algorithm implemented directly on this D-BSP machine is
Θ((logp)2).

The following recursive broadcast algorithm dubbed Root(p) has been introduced
by Juurlink et al. [12] (also see [14]): If there are more than two processors, Root(

√
p)

is executed on P1, . . . ,P√
p (appropriate rounding provided). Then every processor Pi,

i ∈ {1, . . . ,
√

p}, sends α to Pi·√p. Now, the machine is partitioned in
√

p groups of size√
p each, where finally Root(

√
p) is executed.

It is a nice exercise to write a D-BSP program that implements algorithm Root(p)
and to prove the following theorem.

The (recursive) partition of the problem into subproblems that have to be solved on
‘compact’ submachines is the impact of the locality function on the algorithm design.

636 F. Meyer auf der Heide and R. Wanka

Theorem 4. On the D-BSP, algorithm Root(p) has a runtime of

O

(log logp∑
i=0

2i ·
(
L(p1/2i

)+g(p1/2i
)
))

.

For our hypercube example, the runtime of Root(p) is O(logp log logp).
Correspondingly to Theorem 4, Juurlink et al. prove a lower bound [12] that matches

this upper bound for large ranges for L(k) and g(k).

Theorem 5. Any algorithm for the broadcast problem on a p-processor D-BSP machine
with latency L(k) and gap g(k) with logk/ log logk ≤ L(k) ≤ (logk)2 and
logk/ log logk ≤ g(k) ≤ (logk)2 for all k, 1 ≤ k ≤ p, has runtime

Ω

(log logp∑
i=0

2i ·
(
L(p1/2i

)+g(p1/2i
)
))

.

4 The PUB Lib

In the previous sections, we showed how the BSP model and its extensions influence
the design of efficient parallel algorithms. The other important aim of a bridging model
like, in our case, BSP is to achieve portability of programs. That means there should
be an environment on parallel machines that supports the coding of BSP algorithms
independent from the underlying machine and that executes the code efficiently.

Such BSP environments are the Oxford BSPlib [10], the Green library [9], and the
PUB Lib (Paderborn University BSP Library) [5].

The PUB Lib is a C Library to support the development and implementation of
parallel algorithm designed for the BSP model. It provides the use of block-wise com-
munication as suggested by the BSP* model, and it provides the use of locality as
suggested in the D-BSP model by allowing to dynamically partition the machine into
independent submachines.

It has a number of additional features:

– Collective communication operations like, e. g., broadcast and parallel prefix are
provided and implemented in an architecture independent way. Furthermore, as
they are non-synchronizing, they have very good runtimes.

– By providing partitioning and subset synchronization operations it is possible for
users of the PUB Lib to implement and analyze algorithms for locality models as
discussed in the previous section.

– Oblivious synchronization is provided.
– Virtual processors are incorporated into the PUB Lib. These processors can be used

for solving problems of sizes that do not fit into main memory efficiently on a
sequential machine. Furthermore, these virtual processors serve as a parallel machine
simulator for easy debugging on standard sequential programming environments.

The PUB Lib has been successfully installed on the Cray T3E, Parsytec CC, GCel,
GCPP, IBM SP/2, and workstation clusters, and on various single CPU systems.

Parallel Bridging Models and Their Impact on Algorithm Design 637

All information for downloading and using the PUB Lib can be found on the project’s
webpage http://www.upb.de/ ˜ pub/.

Currently, the implementation of the migration of virtual processors from heavily
loaded CPUs to less loaded CPUs is in progress.

Acknowledgments. The effort on BSP, BSP*, and on designing and analyzing algo-
rithms for them and on implementing the PUB Lib in Paderborn is the work of many
individuals: Armin Bäumker, Olaf Bonorden, Wolfgang Dittrich, Silvia Götz, Nicolas
Hüppelshäuser, Ben Juurlink, Ingo von Otte, and Ingo Rieping who are certainly also
authors of this paper.

References

1. M. Adler, P.B. Gibbons, Y. Matias, V. Ramachandran. Modeling parallel bandwidth: local
versus global restrictions. Algorithmica 24 (1999) 381–404.

2. A. Bäumker. Communication Efficient Parallel Searching. Ph.D.Thesis, Paderborn University,
1997.

3. A. Bäumker, W. Dittrich, F. Meyer auf der Heide. Truly efficient parallel algorithms: 1-optimal
multisearch for an extension of the BSP model. TCS 203 (1998) 175–203.

4. A. Bäumker, F. Meyer auf der Heide. Communication efficient parallel searching. In: Proc.
4th Symp. on Solving Irregularly Structured Problems in Parallel (IRREGULAR), 1997, pp.
233–254.

5. O. Bonorden, B. Juurlink, I. von Otte, I. Rieping. The Paderborn University BSP (PUB) Li-
brary — Design, Implementation and Performance. In: Proc. 13th International Parallel Pro-
cessing Symposium & 10th Symposium on Parallel and Distributed Processing (IPPS/SPDP),
1999, pp. 99–104.

6. D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramonian R., T.
von Eicken. LogP: A practical model of parallel computation. C.ACM 39(11) (1996) 78–85.

7. F. Dehne, A. Fabri, A. Rau-Chaplin. Scalable parallel computational geometry for coarse
grained multicomputers. Int. J. Computational Geometry & Applications 6 (1996) 379–400.

8. W. Dittrich. Communication and I/O Efficient Parallel Data Structures. Ph.D. Thesis, Pader-
born University, 1997.

9. M.W. Goudreau, K. Lang, S.B. Rao, T. Suel, T. Tsantilas. Portable and efficient parallel
computing using the BSP model. IEEE Transactions on Computers 48 (1999) 670–689.

10. J. Hill, B. McColl, D. Stefanescu, M. Goudreau, K. Lang, S. Rao, T. Suel, T. Tsantilas, R.
Bisseling. BSPlib: The BSP programming library. Parallel Computing 24 (1998) 1947–1980.

11. B.H.H. Juurlink. Computational Models for Parallel Computers. Ph.D. Thesis, Leiden Uni-
versity, 1997.

12. B.H.H. Juurlink, P. Kolman, F. Meyer auf der Heide, I. Rieping. Optimal broadcast on parallel
locality models. In: Proc. 7th Coll. on Structural Information and Communication Complexity
(SIROCCO), 2000, pp. 211–226.

13. J.H. Reif, S. Sen. Randomized algorithms for binary search and load balancing on fixed
connection networks with geometric applications. SIAM J. Computing 23 (1994) 633–651.

14. I. Rieping. Communication in Parallel Systems – Models, Algorithms and Implementations.
Ph.D. Thesis, Paderborn University, 2000.

15. P. de la Torre, C. P. Kruskal. Submachine locality in the bulk synchronous setting. In: Proc.
2nd European Conference on Parallel Processing (Euro-Par), 1996, 352–358.

16. L. Valiant. A bridging model for parallel computation. C.ACM 33(8) (1990) 103–111.

	Introduction
	The Plain BSP Model
	Definition
	An Example: The Multisearch Problem

	Extensions of BSP
	BSP*: Critical Block Size and the Multisearch Problem Revisited
	D-BSP: Locality and the Broadcast Problem

	The PUB Lib

