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Abstract

In this work, we study job characterization in multi-programmed multipro-
cessor system by taking into consideration the parallel job models. We first
introduce an example to illustrate the issues involved. Then we focus on two
popular system scheduling policies: round-robin for single processor systems,
and equi-partition for multiprocessor systems. We analytically study effect of
job parallelization on the overall performance of the system, and also present
simulation results. Through these studies, we discuss scheduling policies of par-
allel jobs in relation to the ratio of number of jobs and the number of processors
in the multiprocessor system, and propose new paradigm for parallel algorithm
desiguns.

1 Introduction

In contrary to single processor computers, the multiprocessor system environment
creates many complications in design and analysis of architecture and algorithms.
Different types of parallel architecture resulted in architecture-dependent algorithm
designs in the early stages of parallel computing (and still do.) Later, several paral-
lel models (e.g., [13, 18, 2]) emerged that proposed architecture independent parallel
computing, and hence made it possible to have a general purpose parallel computer
environment. In a general purpose parallel computer system, users submit jobs and
the system schedule their execution to make full use of the system’s computing power.
Even though users may have a good estimation of the processing time of their sub-
mitted jobs, it is often not be taken into consideration by the system scheduler for
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various reasons: e.g., user programs may contain bugs that defy users’ estimation;
users may lie to gain advantage according to scheduling policies; and the resulted
scheduler may cause extra overhead if all job information is taken into consideration.
In fact, recent studies on parallel computer systems have favored simple policies (e.g.,
equi-partition and dynamic equi-partition [15, 19, 9, 10, 6, 8]) that originated from
the Round-Robin policy in single processor systems. For such policies, no specific job
information is required. We should consider such schedule policies in our discussion.
In particular, we view a sequential algorithm for a problem as generating a single
process, and parallel algorithm for a problem as generating k processes (k is deter-
mined by the particular algorithm and no more than the number of processors). Each
process is assigned with an equal processing power when severed by the system as in
the Round-Robin policy.

Despite the fact that it may be difficult to collect, or utilize all job information
in a general purpose parallel system, there is still the possibility that some simple
characterization of parallel jobs can be exploited to improve system performance
[14, 3, 1, 11, 12]. To one extreme, some studies considered utilizing all job infor-
mation in parallelization of jobs [13, 16, 17]. To understand job characterization in
multiprocessor system, one must look into the type of jobs are presented to such
systems, i.e., to study parallel algorithms developed to attack problems that demand
high performance computing. While design of parallel algorithms is often dependent
on the parallel models that they are going to be applied, the measurement of speedup
is common to most of the models. The theoretical model of PRAMs, for example,
call a parallel algorithm to be optimal if the product of the execution time T}, and
the number of processors P is of the same magnitude as the best sequential time
Ti: P x T, = O(T1) (we should call the ratio P;fl )TP the inefficiency.) In more recent
models advocating architecture independent parallel algorithm designs by reducing
communication cost ([18, 2, 5, 4]), extra works are often done to distribute data to
be processed by individual processes (each executed in one single processor), with
interleaved communication phases to coordinate and synchronize the processes.

While system scheduling calls for efficient utilization of computing resources, par-
allelism achieves speedup at the cost of introducing inefficiency (see, e.g., [7]). A
comprehensive study of parallel system scheduling therefore should take into the con-
sideration of the trade-off between the benefit of speedup and the cost of inefficiency
when introducing parallelism for task processing. We focus on this factor of ineffi-
ciency in our study of scheduling policies. In particular, we are interested in decisions
to execute a task with a parallel algorithm or a sequential algorithm in a general
purpose parallel computer system environment, with n jobs and P processors. Very
often, for the same parallel algorithm (may work for different number of processors),
the inefficiency resulted from communication delays would be the same, no matter
what is the number of processes the task is divided into. For example, the inefficiency
that is resulted from communication delays (for the parallel system communication),
the number of communication rounds (as advocated in architecture independent par-
allel algorithm designs), and the extra work necessary for efficient synchronization of
separated computing processes are usually the same no matter how many processes
are used, especially for new parallel algorithm design paradigms mentioned above. In
design of algorithm for coarse grained multicomputers [4], for example, algorithms
often require O(%) local computation time (the constant hidden in the big-O is inde-
pendent of both 77 and p). When the communication costs are sufficiently small (as
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a major requirement in design of coarse grained parallel algorithms), the inefficiency
ratio is mainly determined by this constant in the local computation time, and thus
independent of both T} and p.

We exploit the associated inefficiency for each job in the design of our scheduling
policy. When inefficiency is bigger than one, it may not be helpful to execute jobs with
parallel algorithms, especially when the number of jobs is relatively large. However,
when the number of jobs is reduced to sufficiently small than the number of processors
of the system, it may become necessary to execute these remaining jobs in parallel
mode. However, we may have to start these jobs from the beginning since we may
not know which are the jobs that we would like to execute and they may have been
executed for some time in the system, under Round-Robin policy. This introduces
a further inefficiency into the system performance. It is thus desirable to have jobs
that could be execute in sequential mode first and then continue with parallel mode
for the remaining part at any point in time. This poses a new challenge for parallel
algorithm designs. We should not deal with the new challenge here but study the
benefit of the existence of such algorithms.

Section 2 analyzes a special case of two jobs and three processors to illustrate the
issues that might arise from our consideration. We consider the inefficiencies from
generating two or three processes for each job and obtain analytic results. In Section
3, we study a general case of n jobs and p processors. We deal with the problem with
a comparison of two policies: parallel processing and sequential processing. We aim
at obtaining a policy that decides to introduce parallelism for job processing or to use
sequential algorithms. In Section 4, we consider the more general case, where there
are more jobs than threshold of introducing parallelism. In this situation, we consider
the benefit of introducing parallelism, after many of the jobs finished execution, to
the last few jobs remained uncompleted. Two models are considered: for one, only
the remained portions are parallelized, and for another, jobs have to restart from the
beginning in the parallel execution mode. The former is obviously more desirable but
it would put harder requirement on parallel algorithm designs (and one that has not
been noticed before to our best knowledge.) In Section 5, we conclude with discussion
on the parallel algorithm design issues arisen from our study.

2 An Illustrative Example

In this section, we use our devised parallel algorithm to execute a task with two jobs
J1, Jo on three identical parallel processors My, Mz, M3. Here, two jobs J1, J2
require respectively x1, x5 units of unknown processing time, but we shall know their
exact values at the final execution.

Our devised parallel algorithm is as follows: For any job J;, we consider the two
possibilities to process it, i.e., either J; is parallelized in average into two small jobs
requiring % - ; units of processing time or it is serialized, then each part (including
parallelized ones) will be parallelized to process one unit of processing time per each
time on one of three processors. We may always assume (3 < 2 below.

By using our devised algorithm, we get a first follwoing result of total completion
time involving in either parallelizing one or two jobs in average into small parts or
serializing two jobs, whose proof can be found in the full version.

Theorem 1 Suppose three identical parallel processors M7, Ms, M3 and two jobs
J1, Jo which require z;, x5 units of unknown processing time, respectively.
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(i) If 1 < B < &, then we get the (determined) minimum total completion time by
parallelizing each of two jobs [J1, J2 in average into two small parts than any
other ways;

(ii) If g < B2 < 2 and it is assumed that two processing times x; and x, are both
randomized variables with uniformly identical distribution, then the expected
value of total completion time by parallelizing both jobs jl, J> in average into
two small parts is better than any other ways if & g <B2< <1 i 8 and the expected
value of total completion time by only parallelizing one of two jobs in average

into two small parts is better than any other ways 1f < B2 < 2.

In addition, we consider another possibility to process 7;, i.e., J; is parallelized in
average into three small jobs requiring %3 - x; units of processing time, where 83 < 3.
We can get following result whose proof can be found in the full version.

Theorem 2 Suppose three identical parallel processors My, Ma, M3 and two jobs
J1, Jo which require at random z1, x5 units of processing time, respectively. The
three variables ®, ¥ and T are defined above. Then

(i) If 1 < B2 < 12 and B3 < 1, the minimum expected value of completion time
of two jobs is obtained by parallelizing each of two jobs in average into three
small parts with &xl, B34, units of processing time, respectively;

(i) 1< 6 < —3 and 2 ﬂQ < B3 < 3, the minimum expected value of completion
time of two jobs is obtalned by parallelizing each of two jobs in average into two
small parts with %xl, B2 1) units of processing time, respectively;

(iii) If 2 < B2 <2 and 3 < 32 + 75, the minimum expected value of completion
tlme of two jobs is obtained by parallelizing each of two jobs in average into
three small parts with %3301, B2 4, units of processing time, respectively;

(vi) If 2 < B, < 2 and 562 + 15 < B3 < 3, the minimum expected value of
completion time of two jobs is obtained by parallelizing only one of two jobs
in average into two small parts with £ Bz (or [322 x2) units of processing time,
respectively.

3 Decision to Process Job in Parallel or in Sequent

In this section, suppose that there are p identical parallel processors M1, Ms, ...,
M, and n jobs Ji, Jo, ..., Jn. We shall execute these n jobs on p identical par-
allel processors by following devised algorithm: For any job J;, we consider the two
possibilities to process it, i.e., either J; is parallelized in average into p small parts
requiring % - x; units of processing time or it is serialized, then each part (including
parallelized one) will be parallelized to process one unit of processing time per each
time on one of p processors, where a; > 1 is called an expansion coefficient of job
Ji. If a; is smaller, it is better to parallelize job J; in average into p small parts
requiring % - z; units of processing time, otherwise it is serialized. Roughly, if «o;
satisfies a; < £ for each job J;, then it is better to parallelize each job in average
into p small parts such that the completion time of these n jobs is better than that of
serializing jobs (see Theorem 4); otherwise, we can parallelize partial jobs in average
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into p small parts such that the completion time of these n jobs is better than that
of serializing jobs (see next section).

Firstly, if each of n jobs is serialized, we can get the total completion time of these
n jobs to process these n jobs on p identical parallel processors as follows, whose proof
can be found in the full version of this paper.
Theorem 3 Suppose that we process n jobs J1, J2, .., Jn on p identical parallel
processors My, Ma, ..., M, by assigning an unit of processing time of each job to
some processor per each time (i.e., each job is processed on at most one processor per
each time), where n jobs require x1, 2, ..., T, units of unknown processing times,
respectively. Then

(i) If n < p, then the total completion time of these n jobs is > 1" | @;;

(ii) If p <, then the total completion time of these n jobs is 37;7 7 20=2F1g;, +
E?:nfp 41 Zji, where z;, < zj, <--- <y, . In particular, its total completion

: H ntp NP n .
time is at most “72 30wy + 3, o4 @i

Secondly, if each of n jobs is parallelized into p small parts, we can get the total
completion time of these n jobs as follows.
Theorem 4 Suppose that we parallelize each of n jobs J1, J, ..., Jn in average into
p small parts, each of which requires 2t - z; units of processing time, then assign each
of which on p identical parallel processors My, Ma, ..., M, by an unit per each time,
where n jobs require x1, T2, ..., Z, units of unknown processing times, respectively.
So the total completion time of these n jobs is as follows: % Y (2n—2i4+1)ajz;, —
@, where {j1,j2,-.-,dn} = {1,2,...,n} satisfies o, z;, < aj,zj, <--- < aj, ;-
In particular, the total completion time of these n jobs is at most % 2?21 Q;T;— w
Proof. Since each job Jj; is parallelized in average into p small jobs, each of which
requires -z, units of unknown processing time, we can suppose that the completion
time of job Jj, starting at the end of job Jj,_, to the completion of job Jj, is t; for
each i € {1,2,...,n} (here we put z;, = 0 and «;, = 0 for convenience), then we get
tlz(%—l)n+1andti:W-(n—i+l)+lif2§i§n. So the
total completion time of n jobs J1, Jo, --., Jn is as follows

n J n
1 ~1
total = | D ti = 52(2" = 2i+ oy, zj5, — 7n(n2 )

j=11i=1 i=1
Especially, by the fact % < aj""# <. < %, we easily get > ., (2n —
2+ Ve, x5, < D01 ne,xg, =n YL, aimi. So we get total < 23T i — a(n-b),
i.e., the total completion time is at most 2 S i — n{n=1) O

2
For the case a; = a for each integer i, we get the following direct consequence as

follows: the total completion time of these n jobs is £ S @n—2i+ 1)z, — w

. . no n . n(n—1) . . . .
which is at most o Y i1 Ti — =5, where zj, < 35, < < zj,.

Here, we give some remarks: (i). For the casen < pand1 < a < £ we get total <
>, x;, this means that it is better to parallelize each job in average into p small
parts in this case such that the total completion times of these n jobs is smaller than
that whose jobs are all serialized; (ii). In the preceding proof, we assume indeed that
our devised parallel algorithm is processed on the order of Jj,, Jj,, ..., Jj,, but when

7
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the devised parallel algorithm will be processed on any order of these n jobs, then we
can get the total completion time of these n jobs is at most % Y (2n—2i+1)ay,x;,,

this means that the absolute deviation of our devised parallel algorithm is at most
n(n—1)
.

As an experimental result shown in Figure 1, when we assign n jobs J1, Js, - -,
Jn to satisfy the uniform distributions, it is given out the ratio of Y.}, z; divided by

> > @n—2i+1)zj, — @ at the some different values of a and the number of
jobs n. It is easy to see that the total completion time of parallelizing each of these
n jobs in average into p small parts is less than that of serializing these n jobs if the
ratio is greater than one. In addition, when we also assign n jobs J1, J2, ..., Jn
to satisfy the negative exponent distribution or Poisson distribution respectively, we
shall obtain the similar figure as Figure 1.

4 The Benefit of Parallelizing Partial Jobs

In this section, suppose that we have p identical parallel processors My, M, ..., M,
and n jobs J1, Ja, --., Jn, where n < p. Considering differently from parallelizing
all jobs, we shall pay our attention to some possibilities of parallelizing partial jobs
in average into p small parts. Roughly, by using the devised parallel algorithm in
the proceeding section, we consider some possibilities of parallelizing partial jobs in
average into p small parts in order to get the better total completion time than that of
serializing these jobs. We consider two possibilities as follows: For some fixed integer
s (0 < s < n), at the end of execution of the s shortest jobs, we have got the left
n — s jobs and we can parallelize each left job in average into p small parts. The first
method is to parallelize each left job in average into p small parts, each final part of
which requires % - (z; — z; + 1) units of unknown processing time (here z, > 1) , and
the second one is to do so with each final part requiring % - z; units of processing
time, where the parallelized job J; requires z; units of unknown processing time. We
hope to obtain the better integer s such that the final total completion time of n jobs
is minimum.

Theorem 5 Suppose that we have p identical parallel processors My, Ms, ..., M,
and n jobs J1, Jo, - - ., Jn which require respectively 1, x2, ..., £, units of unknown
processing time on some processors, where n < p and z; < z3 < --- < z,,. Let s be
a fixed integer satisfying 0 < s < n.

(i) At the end of s jobs J1, Ja, ..., Js executed and z, > 1, suppose that each left
job J; requiring x; — (z; — 1) units of unknown processing time is parallelized
in average into p small jobs, each of which requires £ - (x; — x5 + 1) units of

. . . . p .
processing time, then the total completion time of these n jobs J1, Jo, - -, Jn
is

- a(n — s)? a < )

Sowit(n-s- e + 83 (2027 4+ oy + fim.s),

i=1

j=s+1

a(n—s)2 _ (n=s)(n—s-1).
2 ?

where f(n,s) = ==

(ii) At the end of s jobs J1, Ja, ..., Js executed (putting zo = 0 for convenience),
suppose that each left job J; requiring z; units of unknown processing time
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is parallelized in average into p small jobs, each of which requires 2 - z; units
of unknown processing time, i.e., we restart to process the n — s jobs left by
parallelizing each in average into p small parts, then the total completion time

of n jobs J1, J2, - .., Jn is

Z“’z (n—s xs+; 3 (@n—2j+ 1)z - (”—3)(7;—3—1)_

Jj=s+1

Proof. (i). We can get the total completion time of these n jobs in the two following
stages:

Stage 1. At the end of the s executed jobs Ji, J2, ..., Js, we get the total
completion time of these s jobs as follows total; = Y ;_, ;.

Stage 2. At the end of the s executed jobs Ji, J2, ..., Js (here z; > 1), we know
that each left job J; which requires z; — (5 — 1) units of unknown processing time is
parallelized in average into p small jobs, each of which requires % -(z; —xs+1) units of
processing time. Put t; to represent the completion time of job J; starting at the end
of job J;_1 to the completion of job J; for each i € {s+1,5+2,...,n} (note t; = =
for convenience), by using similar arguments in the proof of preceding theorem, we
easily get t; 4, = (M—l)(n—s)—l—l and t; = %-p(n—ijlH—l

if s4+2 <4 < n. Then we get the total completion time of Jyy1, Jsq2, ---, Tn as
follows totaly = 3771 >, t
So the total completion time of n jobs J1, Jo, - .., Jn is as follows

total = zs:w, Z Zt,—z:wl (n —s)ts + z”: (n—j7+1);
i=1

i=s+1 j=s j=s+1

- a(n — 3)2 - _
= Z$z+(n_S_T)$S+_ 2(2’”—21—}—1)3]1
1:_

5 i=s+1
+a(n—s) _(n=s)(n—-s-1)
p 2

(if). With the similar arguments in (i), we only consider the following stage: at
the end of s executed jobs Ji, J2, ..., Js, each left job J; which also requires z;
units of processing time is parallelized in average into p small jobs and restart to be
processed, each of which requires % - z; units of processing time. Put ¢; to represent
the completion time of job J; starting at the end of job J;_1 to the completion of
job J; foreach i € {s+1,s+2,...,n} (note t; = z5 for convenience), we get ts41 =
(%2t —1)(n—s)+1land t; = w-(n—j—}—l)—}-l if s4+2 < i < n. Then we get
the total completion time of Jsi1, Js+2, -+, Jn as follows totals = 350 ) 375t

So the total completion time of n jobs J1, Ja, - - -, Jn is as follows

. - )  (n—=s)(n—-s-1)
total = Zml (n sms—f— Z(Zn 2+ 1)z; 5

i=s+1

O
We give some remark: In the proof of Theorem 5, we assume indeed that our
devised parallel algorithm is processed on the order of Ji,Jo,. .., J,, but when the



Parallel Models and Job Characterization for System Scheduling 655

devised parallel algorithm will be processed on any order of these n jobs, then we
can get the total completion time of these n jobs is at most » ; ;@i + (n — s —

2
@)xs +5 E?:s—i—l (2n — 25 + 1)z; in the first method (or }.;_, #; + (n — 8)zs +
%Z_?:s 4+1(2n — 2j + 1)z; in the second method, respectively), this means that the

absolute deviation of our devised parallel algorithm is at most the absolute value of
a(";s)2 - (”_5)(3_3_1) in the first method (or W in the second method,
respectively).

In the Figures 2 and 3, we give out some experimental results of the ratios of
>, ; divided by the total completion time of the two models stated in Theorem 5
when we assign n jobs J1, Jo, - .., Jn to satisfy the uniform distributions. It is shown
that the first model that the remained portions are parallelized is better than the
second model that restarts from the beginning in the parallel execution mode. On
the other hand, it would be better not to parallelize these n jobs if the value of «
is increased. In addition, when we also assign n jobs Ji, J2, -.., Jn to satisfy the
negative exponent distribution or Poisson distribution respectively, we shall obtain
the similar figures as Figures 2 and 3.

5 Remarks and Conclusion

In this work, we study the tradeoff of parallelism and efficiency in terms of minimizing
the mean completion time of jobs for jobs with known inefficiency but unknown
execution time. Our characterization of parallel jobs are based observation on parallel
algorithms designs. Our results show that best performance would be achieved if jobs
can be executed in single process mode first and then continue in parallel mode
without creating much extra inefficiency. This may lead to interesting questions and
new models for design of parallel algorithms.

We are particularly interesting to find parallel algorithms that allow for sequential
execution with time 77 +o(T}) or parallel execution with time T}, 4+ o(T}) for problems
with best known sequential algorithm of time 7} and best known parallel algorithm of
time T}, with p processors. Most interesting solutions would have sequential time 7;
for duration in sequential mode and parallel time 7, for duration in parallel mode such
that the remaining portion of the sequential execution mode, 71 — 7y is as efficiently

parallelized as the original problem. That is, 7772~ is roughly the same as %.
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