
Tuned Annealing for Optimization

Mir M. Atiqullah1 and S. S. Rao2

1Aerospace and Mechanical Engineering Department

Saint Louis University
St. Louis, MO 63103

2Department of Mechanical Engineering
University of Miami

Coral Gables, FL 33146

Abstract. The utility and capability of simulated annealing algorithm for general-
purpose engineering optimization is well established since introduced by
Kirkpatrick et. al1. Numerous augmentations are proposed to make the algorithm
effective in solving specific problems or classes of problems. Some proposed
modifications were intended to enhance the performance of the algorithm in certain
situations. Some specific research has been devoted to augment the convergence
and related behavior of annealing algorithms by modifying its parameters, otherwise
known as cooling schedule. Here we introduce an approach to tune the simulated
annealing algorithm by combining algorithmic and parametric augmentations. Such
tuned algorithm harnesses the benefits inherent in both types of augmentations
resulting in a robust optimizer. The concept of ‘reheat’ in SA, is also used as
another tune up strategy for the annealing algorithm. The beneficial effects of
‘reheat’ for escaping local optima are demonstrated by the solution of a multimodal
optimization problem. Specific augmentations include handling of constraints, fast
recovery from infeasible design space, immunization against premature
convergence, and a simple but effective cooling schedule. Several representative
optimization problems are solved to demonstrate effectiveness of tuning annealing
algorithms.

Keywords

 Simulated annealing, design optimization, constrained optimization, tuned
annealing, cooling schedule.

1 Introduction

 In pursuit of high quality solutions, design optimization algorithms not only must
find near optimum end result but also demonstrate efficiency in terms of computation. As a
stochastic algorithm, the simulated annealing is well known for its capability to find the
globally optimal solution. Guided probabilistic moves are key to finding global optimum by
simulated annealing while overcoming local optima in the design space. The basic features
of the annealing algorithm can be highlighted by the following pseudocode:

 V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 669−679, 2001.

Ó Springer-Verlag Berlin Heidelberg 2001

Program annealing
Set initial probability of accepting randomly generated worse design
Randomly generate a new solution by probabilistic move from current solution
If better than before accept it as next solution
If worse, accept it only with a certain probability and decrease it for next iteration..
Repeat the process by generating a new solution, until no improvement possible.
End program.

When used with limited probabilistic control, the objective function is improved over many
such steps. But often its iterative and slow convergence can be prohibitive for problems
with many design variables and lengthy function evaluations.
 Many global optimization methods reported in the lierature2,3 are stochastic in
nature and converge asymptotically to the global optimum. When the modality of the
design domain is not overly complex, these methods proved efficient. Many practical
design optimization problems involve a large number of design parameters with objective
functions characterized by many local minima. While the algorithm draws parallel to the
physical heat treatment annealing of metals, the acceptance probability used for accepting
occasional worse design draws its parallel to the temperature. The algorithm and logic
used to progressively decrease this temperature is widely known as cooling schedule.
Because of its discrete nature, the annealing algorithm can overcome non-smoothness and
discontinuities in the design space. The convergence and global characteristics of
simulated annealing (SA) are strongly affected by the structure of annealing and
parameters of the cooling schedule. The analyses of several innovative cooling schedules
are discussed and a parametric schedule is proposed, which is adaptive to problem at hand
and the nature of the design domain and follows a ‘gaussian’ type decrement. Two
combinatorial test problems are used as a platform for comparing effectiveness of various
cooling schedules with that of the tuned algorithm.
 No design should be considered complete without performing some form of
optimization of the initial design. Traditional design approach used localized or specific
performance based design improvement without considering globality of the process. This
is mainly because of the inability of the traditional gradient based optimizers to find the
global optimum.
 The goal of this paper is to demonstrate the simplicity and the utility of the tuned
annealing algorithm. Section two gives the algorithmic steps and the implementation
details of tuned annealing algorithm. Numerical examples include a welded beam design, a
32 variable part stamping problem, a 200 variable part stamping problem, and a 25-bar space
truss optimization, providing an spectrum of highly nonlinear and multimodal design
problems.

2 Tune ups #1 and #2: Improve Feasibility and Handle Constraints

 Simulated annealing responds to changes only in the objective function. Since
almost all engineering design problems are highly constrained, SA would not be suitable
for solving such problems. To take advantage of the global solution capability of SA and
to alleviate this difficulty, it is customary to incorporate the constraint functions g(x) to the
design objective using a penalty function P(x) such that:

670 M.M. Atiqullah and S.S. Rao

() () ()()P x F x r G g xk j j

j

m

= +
=

å
1

 (1)

where, ()[]G g xj j= max ,0 for inequality constraints and ()[]G abs g xj j= for equality

constraints. The factor rk determines the relative degree of penalty. Two inherent

problems plague the penalty function approach that usually slows the SA down and often
leads the solution towards sub optimal solution. First, design problems with a large number
of constraints with a large difference in the numerical values of the constraint functions
pose special difficulty for the SA algorithm. Second, highly constrained problems may
even pose difficulty in finding a feasible solution in the first place.
 Ideally all constraints should be treated with equity and any design solution
violating any constraint should be considered in comparable terms. To guide the annealing
process to handle infeasible design space a constraint navigational strategy has been used
successfully2. This approach takes the constraints into account explicitly, alleviates such
scaling problems, and enhances the convergence through fast achievement of feasibility
when the starting solution is infeasible (and random). Each iteration of such tuned SA
algorithm can be described by the following pseudo-code:

Randomly perturb the variables: obtain a new design.
Evaluate the objective function and the constraints.
IF no constraint is violated proceed with regular annealing.
ELSEIF the number of constraints violated increases, probabilistically accept the design and

go to the next iteration.
ELSEIF the number of constraints violated decreases, unconditionally accept the design and

go to the next iteration.
ELSEIF the number of constraints violated remains the same
AND the amount of violation increases, probabilistically accept the design
ELSE
 accept the design.
ENDIF
Proceed to the next iteration.

This tune up helps get rid of penalty function as well as scaling of constraints as often
necessary in untuned algorithm.

3 Tune Up #3: Reheat

 It is one of the most ambiguous parameters in annealing to determine with some
certainty when to stop the random search process and delare the solution as optimal.
While various cooling schedules are proposed3,4 using statistical methods to sense
closeness to optimality, numerical implementation of those are virtually impractical due to
the requirement of prohibitively long Markov chains i.e. sequence of random probing of the
design space. As a result algorithms have to be terminated after finite annealing process
with uncertainty in the optimality of results. The situation is further complicated when real
valued variables make up the design space and certain discretization is used to simulate the
real space. For convergence purposes, the randomly selected steps in the random

671Tuned Annealing for Optimization

directions must be gradually decremented in magnitude. As the SA algorithm approaches
the end of a Markov chain (long sequence of random steps), the steps become too small to
continue searching far from the current solution, which practically halts the SA. As a
compromise between excessively long annealing process and uncertain optimal result, a
reheat strategy2 has been used. Basically multiple SA algorithm runs are executed in a
sequence such that the one SA algorithm picks up a solution as its starting point, which is
left off by the previous one. It is essentially a re-annealing strategy with a stopping criteria
built into it. The pseudocode for the reheat is given below:

Program Reanneal
Preset annealing and reannealing parameters
Anneal for a preset number of iterations. Results in set A
Reset temperature to original (or determine for the neighborhood of the current solution A)
Reanneal for the preset number of iterations. Reusults in set B.
If B is better than A, replace A by B. Continue to Reanneal.
If B is close or worse than A, terminate reannealing. B is the current solution.
End Reanneal.

Usually the only problems that may improve successively with each reanneal are those
with multimodal objectives functions. The added benefit is that by setting shorter markov
chains in the annealing and using multiple reannealing, optimal results may be found
without lengthy annealing run, even for the unimodal functions with just single optimal
solution.

4 Tune Up #4: Simple Cooling Schedule

 An annealing algorithm can be made quite robust by selecting and implementing a
proper cooling schedule irrespective of the algorithmic modifications discussed earlier.
Much research has been devoted to this aspect. A cooling schedule is defined by a set of
parameters governing the finite time behavior of the SA algorithm. The aim in the selection
of the parameters is to closely follow the asymptotic behavior of the homogeneous
algorithm using inhomogeneous implementation in finite time. The cooling schedules
which use information from the objective evaluation and use it to adapt their annealing
strategy, adjusts themselves for the design space at hand. For virtually all engineering
design problems with multimodal objectives and large number of constraints and design
variables, the capability to find globally optimal solution is extremely valuable. Several well-
known schedules are discussed followed by the introduction of a simple schedule. Our
schedule draws power from the adaptive probing of the design space. Moreover the
decrement of the temperature, which is the control parameter of the cooling schedule, is
designed to follow certain heuristics as well as characteristics of random search. While
much simpler, our schedule performed better than or as well as several published schedules
tested. The structure of any cooling schedule can be described by the following three
parameters:
 Initial temperature: The value of the initial temperature does not affect the
adaptive characteristics of the cooling schedule but is critical for enabling the SA algorithm
to overcome local optima. Initially, a quasi-equilibrium state can be assumed by choosing
the initial value of the temperature such that virtually all transitions have guaranteed

672 M.M. Atiqullah and S.S. Rao

probability of acceptance. Many of the so-called adaptive schedules4,5,6,7 draw their
success from probing the neighborhood of the current design and determining the initial
temperature. Starting with a too high temperature will unnecessarily prolong the already
long SA process. As the algorithm progresses, the temperature must approach a value of
zero, so that no worse solutions will be accepted. Then the algorithm virtually will not
achieve any more significant improvement in the objective function. This tapering
convergence is again much linked with any decreasing step length, specially if real valued
design space is handled by discrete stepping of the SA.
 Length of Markov chain: The number of transitions attempted at any specific
temperature is called the length Lk of the Markov process at the k th step of temperature

decrement. For finite time implementation, the chain length is governed by the notion of
closeness of the current probability distribution aL tk k, at temperature tk to the stationary

distribution qtk
. The adaptive schedules have taken different approaches with different

assumptions and preset conditions to determine when such closeness is achieved8.
 Decrement rule for temperature: The way the temperature is decremented is
directly related to the notion of quasi-equilibrium of the probability dis tribution of
configurations. It is intuitively obvious that a large decrement in the temperature tk , at the

k-th Markov chain, will necessitate a large number of transitions Lk +1 at the (k+1)-th

Markov chain before a quasi-equilibrium state is restored. Most adaptive cooling
schedules follow the strategy of small decrements in temperature tk to avoid long Markov

chains Lk , albeit at the cost of increased number of temperature steps.

4.1 An Adaptive Schedule

 The cooling schedules can be divided into two broad groups, static and adaptive.
The schedules, which follow a predetermined course of decrement, are termed static while
those using some statistical analysis of visited cost/design objective to control their
decrement are known as dynamic. The static cooling schedules generally disregard the
dynamic behavior of the problem at hand, often place too many restrictions on the
annealing process. On the other hand, dynamic schedules, being computationally
intensive, increase the computational effort many folds. To combine the beneficial
characteristics of both classes, a simple hybrid schedule is proposed with two control
parameters. The initial temperature t0 should be high enough so that all configurations are

equally admissible for acceptance at the initial temperature. In our approach, we include all
moves for such estimations. In earlier works, the cost decreasing moves were not
considered in the computation of the initial acceptance probability c 0 .

Thus, the augmented initial acceptance ratio is defined as

 ()
c

s
0

0

1 00
3

= » » -
+ì

í
ï

îï

ü
ý
ï

þï

no. of accepted moves

no. of proposed moves
 . exp

D DC

t
C (2)

which leads to the new rule for the computation of the initial temperature:

673Tuned Annealing for Optimization

 ()
()

0

0
/1 ln

3

c

s CC
t D+D

= (3)

 Experiments with several design problems, with arbitrary initial starting
configurations (designs), suggest that the value of t0 is increased by 50% or more when
Eqn. (3) is used compared when standard deviation is not used.
 The time to arrive at a quasi-equilibrium is related to the size of neighborhood
()́. We propose by saying that the chain can be terminated if either the number of

acceptances or rejections reach a certain number L ´ , where L is a multiplication factor.

That is,

 { }
{ }ïî

ï
í
ì

<´L=´L+

<´L=´L+
=

12 ,1 ;2

21 ,2 ;1

mmmm

mmmm
Lk

 (4)

where m1 and m2 are the cost decreasing and cost increasing moves experienced by the
algorithm.
 The progression of the cooling process, and simultaneously the annealing, can be
divided into three segments, viz., global optimum locating (jumping over mountains),
descending the mountain (and jumping over smaller hills), and local (mostly greedy) search.
A cooling strategy should reflect these segments in the correct sequence.

At the onset, any rapid decrement of the temperature should be discouraged to
avoid any 'quenching' effect. In the third (last) stage of temperature decrement, the
algorithm is rarely expected to jump over hills and is assumed to be already in the region of
the global solution. During this stage (last third of the Markov chain), the temperature
value and decrement rates should be maintained at lower values to result in a flat
convergence pattern. During the middle part of annealing, the algorithm should perform
most of the necessary decrements in temperature. While annealing, the value of the cost
function is assumed to follow a Gaussian pattern especially at higher temperatures. The
above three tier cooling can be incorporated into one Gaussian-like temperature decrement
over the entire annealing process. The following formula is used to compute the annealing
temperature tk during a Markov chain k:

 t t ak

k

f k

b

= ×
-

×
Ø

º
Œ

ø

ß
œ

0
max

 (5)

where a and f are the control parameters and kmax is the maximum number of chains to
be executed. The exponent b can be computed once a and f are selected and the final
temperature t f (some small number) is set. At the final temperature decrement step (last

Markov Chain), t tk f= and k k= max . Equations (5.59) and (5.55) yield,

 t t af
f

b

= ×
-æ

Ł
ç

ö
ł
÷

0

1

 (6)

An interesting feature of the decrement rule, Eqn. (5), is that it can be tailored to go through
any given temperature tk (t t to k f> >) during a given Markov chain k. The difficulty lies

in the selection of the values for the parameters a and f. When the algorithm is in the k th

674 M.M. Atiqullah and S.S. Rao

Markov chain and the parameter f equals (k/kmax) the corresponding temperature is given
by

a
0ttK

. This indicates that the temperature attained in the k th chain is equal to the 1
a

æ
Łç

ö
ł÷

th

fraction of the initial temperature t0. For a typical schedule, the temperature will be reduced
to half of the initial temperature at about one-third the maximum number of allowed Markov
chains, i.e., a = 2 and f = 1/3. This will allow 2/3 of the time to be devoted to finding the
optimum in the current region.
 Using a predetermined small number for the final temperature with a parametric
form of the decrement rule, an upper limit is chosen for the number of iteration. As such,
the algorithm is terminated if any of the following criteria are met in the order listed below:

(i) The final cost value in five consecutive Markov chains did not improve.
(ii) Similar to above. Five consecutive Markov chains did not improve the average

cost C beyond a specified small fraction e i.e.,

C C

C
k k

k

-

-

-
<1

1

e (7)

Here, the algorithm is assumed to have arrived at/very close to the optimum or
have converged and, hence, it is terminated. The value of e is set from past
experience based on the cost values, scale factors, the accuracy desired and the
computational effort involved.

(iii) The algorithm did not terminate in kmax Markov chains. At this point, the
temperature reaches a value of tf.

If proper stopping criteria are used, it is unusual to have the algorithm stopped by this
method, indicating insufficient annealing for the given problem situation.

5 Numerical Examples

 The effects of the tune-ups are demonstrated by the following examples.

5.1 Welded Beam Design

 Welded joints can save time and money, if designed properly. In this example,
the total cost of a welded beam is minimized subject to various constraints. There are four
dimensions that must be determined such that the cost is minimum while satisfying the
constraints, shown in Figure 1. This nonlinear optimization problem was used by many
researchers and the formulation is adopted from Reklaitis 9. The optimization problem is:

Find the 4 dimensions {W,t,l,T}
that minimize the cost ()F t l WT l= + +11047 0 04811 14 02. . .

subject to t tweld d£ , s sweld d£ , t T£ , P Fc ‡ ,

 t ‡ 0 125. , and dtip £ 0 25.
,

where, t d = allowable shear stress in the weld, s d = allowable normal stress in

the beam, Pc = buckling load,dtip = end deflection, and F = 6000 lb.

675Tuned Annealing for Optimization

The derivations of the stress and deflection equations are found in [9]. The values of t d

,s d and L are assumed to be 13600 psi, 30000 psi and 14 inches respectively. The values

of G and E of the material are chosen as 12E6 and 30E6 psi respectively. The last physical
constraint requires that all the dimensions be non-negative, i.e. t l W T, , , ‡ 0 . This
problem is solved using the regular as well as tuned SA algorithm implemented on a Sun
SparcStation. The results are shown in Table 1 along with those reported by others using

Table 1: Results of Welded Beam Optimization.

Variable Regul. SA Tuned-SA [10]
[11]

Soln.1
[11]

Soln.2

t .1525 0.2471 0.2536 0.2918 0.2489

l 11.64 6.1451 7.141 5.2141 6.173

W 8.5576 8.2721 7.1044 7.8446 8.1789

T 0.2489 0.2495 .2536 0.2918 .2533

 Constraints
violated

none none 3 1 none

Objective Value 2.9265 2.4148 2.3398 2.606 2.4331

 10,11 See the reference section for the sources.

different solution methods. It can be seen that the solution by the Tuned SA is superior
than the one found by the regular SA algorithm. Moreover, the present solution compared
favorably with others [9] in the table except those reported in [10, 11] which violated 3 and
1 constraints respectively. Considering that the SA is inherently a discrete method, the
present results demonstrate the utility of the tuned algorithm as a robust optimizer.

5.2 Two-Variable Multimodal Function Optimization

The minimization of a two dimensional function that has fifteen stationary points
is considered. This function, a form of the well-known Camelback function, is given by
Equation 8.

24
6

42 44
3

1.24),(yyxy
x

xxyxf -+++-= (8)

There are 15 stationary points of this function with global optimums at (0.0898, -0.7127) and
(-0.0898, 0.7127), and f = -1.0316. The starting point was x= -2, y= -1, f=5.7333 (same for

F
t

l

T

W

Fig. 1 : Welded beam design parameters and loading.

676 M.M. Atiqullah and S.S. Rao

implementation with and without the reheat) and the final solutions. The ‘reheat tuned
algorithm found one of the two global minima whereas the simple algorithm got trapped
near one of the local minima on its search path. Both algorithms ran for a total of 500
iterations. The simple SA found the solution x*= -1.73, y*= -0.18, f*=2.29. While the
‘reheat’ tuned SA found the solution x*= -0.087, y*=0.72, f*= -1.03. The ‘reheat’ strategy
was initiated at the midpoint (at 251st iteration) where the tuned algorithm temporarily
accepted worse designs and got out of the local minimum finding better solution. In
computationally intensive applications such as structural design optimization, the reheat
strategy may prove to be an acceptable compromise between a local solution requiring
limited computation and the global solution that might require a prohibitively large amount
of computation.

5.3 Optimal Layout of 16 Circular Parts

 Flat, thin components are cut out or stamped for consumer or industrial products
from sheet metal, fabric, plastic, or other sheet stock. In most cases, like automobile body
components, various size parts are cut out from rolls or plates. This example deals with the
relative positioning of the parts to be cutout such that they are packed as close as possible
and waste is minimized. Thus the objective is minimizing the rectangular area from which
the parts are cut. The parts are assumed to be circular with constraints related to inclusion
and intersection/overlap detection, as shown in Figure 2. The overlap constraints state
that the center distance between any pair of circular parts must be greater than or equal to
the sum of the radii of the respective parts. For a pair of circular parts 1 and 2, overlap is

given by: () () ()÷
ł
öç

Ł
æ +--+- 211212 22 rryyxx . Position and radii are given by (xi,yi) and

ri respectively. As long as this is positive, there is no overlap. A total of n n() /+ 1 2

overlap constraints must be checked for satisfaction. Furthermore, another set of
constraints specifies that the parts should be packed as close as possible to the axes but
should not overlap. A set of 16 circles was randomly placed between the positions

25,0 ££ ii yx in., initially with 13 overlaps and an objective function value of 661.03 in2.

The optimization problem is solved using the tuned SA algorithm. In the final position of
the parts generated by the SA, there were no overlap constraint violations and the pack
was within 0.01 units from the axes. The objective was reduced to 584.46 in2.

Fig. 2. Overlap calculation between 2 circles.

R1

X1

X2 Y1
R2

Y2

677Tuned Annealing for Optimization

5.4 Optimal Layout of 100 Circular Parts

 The circular part compaction is highly nonlinear and multimodal. Problems with
large number of parts is becoming popular as test problems 12. This example deals with 100
circular parts. It has more than 12 times as many design variables, the constraints
increased from 136 to 5050, thus increasing the computational complexity of the problem.
The numerical results are summarized in Table 2.

Table 2 : Initial and final data for the 100 part layout problem.

Items Initial Design Final Design
 Constraints violated 44 1
Amount of violation 15899.75 .002199

Objective value 273148.9 73898.87
% waste 82.98% 37.1%

In this example, the design objective improved quickly during the early iterations but
gradually tapered off in the latter iterations. This is an indication that the algorithm
approached the vicinity of the optimum quickly but its characteristic slow convergence
takes a relatively many more iterations before the convergence criteria are satisfied. The
constraint violation of .002199 in the final design indicates existence of active constraint.

5.5 Optimal Design of a Space Truss

 This example involves a 3-D space truss with 25 members grouped into 8 sets of
sizes. Details of the formulation are available in many literature7. Dhingra and Bennage13
used it to demonstrate an implementation of Tabu Search method. The objective is to
minimize weight subject to buckling constraints under two loading conditions. Each set of
truss members could assume any of the 30 allowable sizes between 0.1 to 2.6 in2, thus
allowing a total of 308 possible configurations. Loads varied from –10,000 lbs to 10,000 lbs.
The weight was minimized from 969.01 lbs to 481.33 lbs using the tuned SA algorithm which
was slightly better than that reported in [13]. The simple cooling schedule as described
earlier, was compared with several prominent schedules published in the literature through
solution of a 8-circle part placement problem (16 variable, each may assume any of 45
values) and this 25-bar space truss optimization problem (8 variable, 30 allowable sizes) . In
the first problem, the simple algorithm performed better than all others in terms of optimum
found. In solving the second problem, the SA using simple cooling schedule came out
second. The authors will publish the details of the tests and their results soon.

6 Conclusion

 The simulated annealing (SA), a discrete stochastic optimization method is tuned
up with several augmentations. One of these augmentations enabled handling of design
constraints without lumping them together with the objective function and/or scaling. The
convergence of the process was also positively influenced by the approach because of
superior infeasibility reduction. This is particularly critical in problems where no solution

678 M.M. Atiqullah and S.S. Rao

exists that could be used as a starting point, as required by many algorithms. Furthermore,
a simple cooling algorithm, which is both simpler and equally effective as other complex
schedules, was implemented. The design of a welded beam and part layout optimization
problems are solved using the tuned up SA, which yielded encouraging results. The 100
part layout optimization problem is taken as a representative, computationally large,
optimization problem. This work showed that implementing several simple algorithmic
developments could add robustness to the annealing algorithm for optimization.

References

1. Kirkpatrick, S., Gelatt Jr., C.D. and Vecchi, M.P., "Optimization by Simulated
Annealing", Science, Vol. 220, pp. 671-680,1983.

2. Atiqullah, Mir, S. S. Rao, “Simulated Annealing and Parallel Processing: An
Implementation for Constrained Global Design Optimization.” Engineering
Optimization, vol. 32, pp. 659-685, 2000.

3. Hajek, B., "Cooling Schedules for Optimal Annealing", Mathematics of Operations
Research, Vol. .13, N0.4, pp. 563-571, 1988.

4. Aarts, E.H.L. and van Laarhoven, P.J.M., “Statistical Cooling : A general Approach to
Combinatorial Optimization Problems,” Philips Journal of Research, Vol. 40, pp. 193-
226, 1985.

5. Aarts, E.H.L. and van Laarhoven, P.J.M.,"A New Polynomial Time Cooling Schedule,"
Proc. IEEE International Conf. on Computer Aided Design, Santa Clara, pp 206-228,
1985.

6. Huang, M.D., Romeo, F, and Sangiovanni-Vincentelli, A.L., “An Efficient General
Cooling Schedule for Simulated Annealing,” in Proceedings of IEEE International
Conference on Computer-Aided Design, pp. 381-384, Santa Clara, November 1986.

7. Atiqullah, Mir M., “Global design optimization using Stochastic methods and Parallel
processing,” Ph.D. Dissertation, School of mechanical Engineering, Purdue
University, West Lafayette, 1995.

8. Romeo, F. and Sangiovanni-Vincentelli, A.L., “Probabilistic Hill Climbing Algorithms :
Properties and Applications,” Proceedings of the Chapel Hill Conference and VL SI,
pp. 393-417, May 1985.

9. Reklaitis, G.V., Ravindran, A., Ragsdell, K.M., “ Engineering Optimization: Methods
and Application,” John Wiley and Sons, New York, 1983.

10. Ragsdell, K.M. and Phillips, D.T.; "Optimal Design of a Class of Welded Structures
using Geometric Programming", ASME Journal of Engineering for Industry, Vol. 98, No
3, pp. 1021-1025, 1976.

11. Deb Kalyanmoy; "Optimal Design of a Class of Welded Structures via Genetic
Algorithms", 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and
Materials Conference. Long Beach, CA. April 2-4, 1990.

12. S.S. Rao, and E.L. Mulkay, “Engineering Design Optimization Using Interior-Point
Algorithms,” AIAA Journal, Vol. 38, No. 11, November 2000.

13. W.A. Bennage, and A.K. Dhingra, "Optimization of Truss Topology Using Tabu
Search," International Journal for Numerical Methods in Engineering, Vol. 38, pp. 4035-
4052, 1995.

679Tuned Annealing for Optimization

	1 Introduction
	2 Tune ups #1 and #2: Improve Feasibility and Handle Constraints
	3 Tune Up #3: Reheat
	4 Tune Up #4: Simple Cooling Schedule
	4.1 An Adaptive Schedule

	5 Numerical Examples
	5.1 Welded Beam Design
	5.2 Two-Variable Multimodal Function Optimization
	5.3 Optimal Layout of 16 Circular Parts
	5.4 Optimal Layout of 100 Circular Parts
	5.5 Optimal Design of a Space Truss

	6 Conclusion
	References

