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Abstract. We combine the recently proposed inductive search and the
Nelder-Mead simplex method to obtain a hybrid global optimizer, which
is not based on random searches. The global search is performed by
line minimizations (Brent’s method) and plane minimizations (simplex
method), while the local multidimensional search employs the standard
and a modified simplex method. Results for the test bed of the Second
International Competition of Evolutionary Optimization and for another
larger test bed show remarkable success. The algorithm was also efficient
in minimizing functions related to energy of protein folding.

1 Introduction

Nelder-Mead simplex method [1] for minimization has been used in various fields
and especially for optimization in chemistry [2], [3]. It is known as a robust
method which does not use derivatives, and has the advantage of easy implemen-
tation [4]. It is also known that the simplex search works best for low-dimensional
problems and that the position and size of the starting simplex are important for
the success of the search. Within the context of global optimization, the simplex
method was successfully used as a component of hybrid algorithms that involve
adaptive random search [5] or genetic algorithms [6].

Here we propose a hybrid algorithm (SIH) for global minimization based on
a combination of inductive search [7] and multiple simplex searches. Two general
characteristics of the proposed algorithm are different from standardly accepted
paradigms. First, we do not use random numbers in our search as is done in
many current global optimizers. This makes our algorithm immune from varia-
tions generated by random numbers. Second, besides using line minimizations
(frequently employed in classical minimization methods) we also use multiple
plane minimizations, i.e. we try to find the minimum in pairs of variables while
the rest are kept constant. This feature makes it possible to capture some interde-
pendencies among variables as they approach their values at the minimum, and
yet it is less expensive in terms of function calls than an extensive n-dimensional
search.
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2 The Algorithm

The search domain for a given objective function f(x) is defined by a n-
dimensional box {x|x = (x1, . . . , xn) ∈ Rn, xi ∈ [bl

i, b
u
i ], i = 1, . . . , n}, where bl

i

and bu
i are lower and upper limits for the variable xi respectively.

Phase 1. Inductive search follows Bilchev and Parmee [7]. This search requires
that the objective function f(x) is also an explicit function of space dimension
n. Thus, it is assumed that the following sequence of functions can be defined:

φ(1, x1), φ(2, x1, x2), φ(3, x1, x2, x3), . . . φ(n, x1, . . . , xn) ≡ f(x1, . . . , xn)
≡ f(x) (1)

For many functions usually used in testing global minimization algorithms, this
is naturally true, as they are defined for any dimension n, i.e. they are also
explicit functions of n. However, in many applications this is not true; therefore
we define the sequence of functions as follows:

φ(i, x1, . . . , xi) = f(x1, . . . , xi, x
s
i+1, x

s
i+2, . . . , x

s
n), i = 1, . . . , n (2)

where (xs
1, . . . , x

s
n) is the point obtained by an initial n-dimensional search with

the simplex algorithm based on the implementation in [4]. The initial simplex
for that search is defined by points pj = c+0.5[ej−1(d · ej−1)−d/(n+1)], j =
1 . . . , n + 1, where e0 = 0, and ei, i = 1, . . . , n are unit vectors of Rn, d =
(bu

1 − bl
1, . . . , b

u
n − bl

n) determines the dimensions of the n-dimensional box, and
c = d/2 is its central point. Points pj define a simplex with its center of gravity
in the central point of the search domain. The induction algorithm now goes as
follows:

1. The minimum of φ(1, x1) at x1 = ξ1 is found by a line minimization. We
used Brent’s method as implemented in [4]; see details below.

2. The minimum of φ(2, ξ1, x2) at x2 = ξ2 is found by a line minimization.
3. The current “minimum” of φ(2, x1, x2) at (ξ1, ξ2) is now improved by a two-

dimensional simplex minimization (algorithm ESIMP2 described below) to
obtain a better or equal value at point (ξ1

1 , ξ1
2).

4. The minimum of φ(3, ξ1
1 , ξ1

2 , x3) at x3 = ξ3 is found by line minimization.
5. The current best point of φ(3, x1, x2, x3) at (ξ1

1 , ξ1
2 , ξ3) is then improved by

a three-dimensional simplex minimization (algorithm SIMP(i, r), i = 3, de-
scribed below) to obtain a better or equal value at point (ξ2

1 , ξ2
2 , ξ2

3).
6. The process described in steps 4 and 5 is now repeated for functions (2),

i = 4, . . . , n, i.e. each time a line minimization based on the previous best
point is performed and subsequently improved by an i-dimensional mini-
mization (algorithm SIMP(i, r)). At the end, for i = n, the full function
f(x1, . . . , xn) is minimized by a n-dimensional simplex algorithm with the
best point (ζ1, . . . , ζn).
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The line minimization by Brent’s method initially requires a bracketing triplet
[4]. For a given variable xi we choose the triplet (bl

i, ηi, b
u
i ), where for the function

g(x) to be minimized g(ηi) is smaller than both g(bl
i) and g(bu

i ). The point ηi

is determined by evaluating the function at n1 equidistant points within the
interval [bl

i, b
u
i ]. If by chance ηi = bl

i or ηi = bu
i , then the line search is omitted

and this point is considered the result of the line minimization. With some
experimentation we found that optimal n1 is around 200 and chose n1 = 176.

The simplex minimizations use the stopping criterion as in [4] with the toler-
ance ε = 10−7. In a simplex search, if a coordinate xi of a vertex moves outside
[bl

i, b
u
i ], it is returned back within that interval to the closest border by a small

distance defined as δi = 0.0001di| sin(2.2n2)|. Here n2 is the total number of pre-
vious boundary crossings. This is designed to keep the point close to the border,
but in various positions, to prevent degeneracy of the simplex.

Phase 2. While Phase 1 can yield the global minimum, sometimes the search
must be extended further. We accomplish this by combining plane and n-
dimensional simplex minimizations, while always utilizing the position of the
current best minimum.

Plane minimizations. These are performed in sequence for each possible pair of
variables; the remaining variables are resting on the values of the previous best
point (initially the result from Phase 1). The sequence of pairs of variables is
given by (xj , xj+i), i = 1, . . . , n − 1, j = 1, . . . , n − i, and the procedure for
extensive plane minimizations (algorithm ESIMP2) is described below. When
the minimization for a given pair of variables results in a significant relative
decrease of the function value (>

√
ε), the plane minimizations are repeated for

all pairs previously achieving a significant decrease. The first pair to achieve a
significant decrease after Phase 1 is simply remembered and the minimization
is not repeated. The described repetition procedure is also employed after the
plane minimization for the last pair of variables in the sequence. We consider
this last effort by repetition as a natural endpoint of SIH.

Multidimensional minimizations. When the plane minimizations for Int(n/2)
consecutive pairs (not counting repeated plane minimizations) are completed,
we then interrupt the sequence of plane minimizations and perform two n-
dimensional simplex minimizations to take into account all variables simulta-
neously. Both minimizations are initialized as SIMP(n, r) with the current best
point and with r = rm = 0.7 + (m1 − 1)0.01, where m counts the number of n-
dimensional minimizations and m1 = m mod 30 (to avoid rm = 1, which would
introduce initial simplex points on the border of the search domain). The two
n-dimensional minimizations differ in the basic simplex algorithm. The first is
designed to avoid a rapid contraction towards the best point, so that the space
is searched more exhaustively. This is achieved by contracting only the worst
point towards the best point when in the standard simplex method all points
are contracted towards the best point. The second n-dimensional minimization
employs the standard method [4].
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Sub-algorithm ESIMP2 . The search in a plane consists of five minimiza-
tions. The first four simplex minimizations are intended to search the rectan-
gular domain of the plane extensively and independently of the previous best
minimum. They are started with the initial triangles as depicted in Fig. 1. The
fifth two-dimensional search is initialized by the best point found before the
four plane minimizations, and the two points which yielded the lowest function
values in those four minimizations. In the fifth plane minimization we use the
non-standard simplex method with the slow contraction to the best point in
order to find a better minimum in the neighborhood of the current one.

Fig. 1. Initial simplexes (triangles) for plane minimizations. In the ESIMP2 sub-
algorithm we used p = 0.12

Sub-algorithm SIMP(i, r). Here we use the implementation of simplex
method by Press et al., [4]. It is used in Phase 1 for i-dimensional minimizations,
i = 3, . . . , n and in Phase 2 for i = n. The algorithm starts with the following ini-
tial simplex: sj = (sj

1, . . . , s
j
n), sj

i = ζi+rσ(bu
i +bl

i−2ζi) max(bu
i −ζi, ζi−bl

i), j =
1, . . . , n + 1, where σ(x) = 1 for x > 0 and σ(x) = −1 for x ≤ 0. The point
(ζ1, . . . , ζn) is the current best minimum. For Phase 1, r = 0.7 and for Phase 2
as defined above.

3 Testing and Comparisons

To compare the efficiency of SIH with other algorithms, we found most suitable
the published results of the Second International Competition on Evolutionary
Optimization [8], [6]. In Table 1 we compare the results of SIH on the test bed,
consisting of seven unconstrained minimizations with the results obtained by
Differential Evolution (DE) [8], and the Simplex Genetic Hybrid (SGH) algo-
rithm [6]. These appear to be the only results of the competition which were
published.
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Table 1. Comparisons for minimization of test functions: Generalized Rosen-
brock (RO, M = 5000), Odd Square (OS, M = 5000), Modified Langerman
(ML, M = 3750), Shekel’s Foxholes (SF, M = 16000), Epistatic Michalewicz
(EM, M = 1250, and Storn’s Chebyshev Polynomials (CP, for n = 9, M = 1500
and for n = 17, M = 10000). φ(1, x) is not defined for RO function; therefore
we used sequence (2). The functions and the corresponding search domains were
obtained from K. Price; see also [8].

F (x) Alg. n VTR M 2M 4M 8M 16M BVAT
RO DE 10 10−6 30.54 4.844 0.059 VTR VTR 0

SGH 7.93 3.75 0.122 3.8 · 10−4 VTR 1.8 · 10−9

SIH VTR VTR VTR VTR • 8.5 · 10−20

OS DE 10 −0.999 −0.415 −0.735 −0.843 −0.859 −0.870 −0.873
SGH −0.173 −0.178 −0.178 −0.178 −0.178 −0.635
SIH NFD VTR VTR VTR • −1.143

ML DE 10 N/A −0.348 −0.176 −0.460 −0.687 −0.834 −0.965
SGH −0.315 −0.487 −0.510 −0.510 −0.510 −0.655
SIH NFD −0.965 −0.965 • −0.965

SF DE 10 N/A −0.967 −2.67 −7.50 −10.1 −10.2 −10.208
SGH −1.477 −1.477 −1.477 −1.477 −1.477 −1.706
SIH −10.208 • −10.208

EM DE 10 −9.66 −5.77 −6.79 −7.81 −8.90 −9.44 −9.660
SGH −6.29 −6.29 −8.62 −8.94 −8.94 −9.556
SIH NFD NFD NFD −8.34 VTR −9.660

CP DE 9 10−6 5.88 · 104 4.12 · 103 46.4 0.0223 VTR 0
SGH 9924 4442 3089 2018 835 11.85
SIH NFD NFD NFD VTR VTR 0

CP DE 17 10−6 4.9 · 106 3.5 · 104 11.8 3.9 · 10−5 VTR 0
SGH 6.4 · 106 1.4 · 106 3.9 · 105 2.3 · 105 1.2 · 105 3.0 · 104

SIH NFD NFD NFD 2445 573 573

Corresponding to the difficulty in the minimization of a given function, each
minimization is characterized by a different number M of function evaluations
for the first check point. Subsequent check points are given as multiples of M . For
each check point the corresponding value of the function is displayed. Value to
reach (VTR) is a value presumed to lie within the basin of attraction which con-
tains the global minimum, and if it is reached, the search is considered successful.
The values obtained at different check points for DE and SGH correspond to the
average of best values reached in 20 independent searches, differed by realization
of random numbers. The best value attained BVAT is the lowest result achieved
in any of the 20 searches at the last check point (16M). In the case of our non-
random algorithm, we present the result of a single search in each column and
the value (BVAT) as either the value obtained when SIH completed the search
(all plane minimizations in Phase 2 performed, signified by •) or when the last
check point had been reached, whichever happened first. In some cases the first
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few check points were reached before the function attained full dimensionality
in the Phase 1; this is signified by NFD. The results of Table 1 show that our
algorithm performed better than the DE algorithm in all cases but the last one,
and much better than the SGH algorithm. We note that K. Price has commu-
nicated to us that the current version of DE is more efficient than the version
from Table 1.

Table 2. Comparison of achievement of various algorithms after 20000 function
calls for functions described in [9]: Odd Square (OS′ [F29] ), Ackley (AC [F20]),
Shekel’s Foxholes (SF [F14]), Griewank (GR [F16]), Katsuuras (KA [F18]), Ras-
trigin (RA [F19]), Rosenbrock (RO′ [F2]), Epistatic Michalewicz (EM [F28]),
Neumaier no. 3 (N3 [F5]), Hyper-Ellipsoid (HE [F4]), Storn’s Chebyshev Polyno-
mials (CP [F30]), Neumaier no. 2 (N2 [F26]), Modified Langerman (ML′ [F27]),
Shekel-7 (S7 [F7]), Colville (CO [F25]).

F (x) n SIH ASA CS DE GE3 GEIII VFSR RAND
OS′ 10 −2.65 −0.015 −0.038 −0.137 −0.407 −0.772 −0.027 −0.089
AC 30 0.205∗ 2.77 6.47 6.46 2.09 1.40 2.78 5.88
OS′ 5 −1.81 −0.409 −0.500 −0.847 −0.727 −0.898 −0.127 −0.577
SF 5 −10.4 −2.67 −3.47 −3.18 −10.4 −2.67 −3.29 −2.14
GR 10 0 0.176 0.066 1.39 0.178 0.636 0.067 20.6
KA 10 1.00 10.5 68.5 417 1.00 316 9.70 199
RA 10 0 2090 4 · 105 105 803 2490 1910 7 · 105

RO′ 10 2 · 10−21 2.97 4 · 10−10 429 8.18 8.85 0.147 5140
EM 5 −4.69 −3.72 −2.79 −4.12 −4.64 −3.82 −3.84 −3.24
SF 10 −10.2 −1.47 −10.2 −0.859 −1.42 −1.41 −1.47 −0.337
EM 10 −9.66 −7.66 −7.38 −4.11 −7.55 −6.65 −9.03 −5.29
N3 25 −2900∗ 2 · 104 −2900 2 · 105 3 · 104 2 · 103 3 · 104 9 · 105

N3 30 −4930∗ 105 −4930 2 · 106 4 · 104 2 · 104 105 2 · 106

HE 30 4 · 10−12∗ 14.7 10−21 193 9.71 5.02 15.0 1060
N3 15 −665 1280 −665 2 · 104 240 −178 520 5 · 104

N3 20 −1520∗ 9600 −1520 3 · 105 −609 892 2490 2 · 105

CP′ 9 0 3400 3.94 5 · 105 8660 722 2220 7 · 104

N2 4 4 · 10−21 0.247 0.217 0.227 0.267 0.239 0.238 0.282
ML′ 5 −0.940 −0.965 −0.482 −0.965 −0.501 −0.513 −0.908 −0.510
S7 4 −10.4 −2.75 −10.4 −10.4 −5.08 −10.4 −5.12 −2.83

RO′ 5 7 · 10−20 0.515 9 · 10−11 8 · 10−7 2.80 3.59 0.338 10.6
N3 10 −210 −205 −210 2140 −39.1 −50.7 −208 2890
ML′ 10 −0.806 −0.274 −0.003 −0.040 −0.513 −0.011 −0.513 −0.005
CO 4 10−20 0.121 2 · 10−11 4 · 10−7 0.385 3.29 0.198 25.0

Further testing is based on a very detailed and thorough work of Janka [9]
in which he compared the efficiency of eight global minimization algorithms,
four additional variants, and a simple random search, on the test bed of thirty
functions F1-F30, some in multiple dimensions. The algorithms we included here
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are: Adaptive Simulated Annealing (ASA) [10], [11], Very Fast Simulated Re-
annealing (VSFR) [12], [11], clustering with single linkage (CS) [13], [14], Dif-
ferential Evolution (DE) [8], and Genocop algorithms (GE3, GEIII) [15], [16].
Janka also considered algorithms SIGMA, PGAPack, which however were out-
performed by the above mentioned ones. We chose to compare Janka’s best
variants of ASA, CS and VSFR with SIH. It is noteworthy that the actual im-
plementation of the algorithms Janka used for his study, were based on the
software available via the Internet; he did not consult the authors for possible
optimal settings [9].

In Table 2 we compare the results of Janka for problems which he classified as
the most difficult minimizations [9] with the results of SIH. Some of the problems
are the same as in Table 1 and they are designated with the same abbreviation.
Some of the problems are essentially the same as in Table 1, except for small
differences in the definition of the function and/or search domain; these are
denoted with a prime. The rounded values obtained after 20000 function calls
are shown. Those underlined represent the function values obtained within the
basin of attraction containing the global minimum. With an asterisk, we denoted
the situation when the corresponding function is defined in such a way that
sequence (1) can be used, but we had to use sequence (2) because Phase 1 of
our algorithm had not reached the full dimensionality before 20000 function
calls. This happened for problems with n ≥ 20. Table 2 clearly reveals that our
algorithm significantly outperformed all others. The global optimum was found
in all but three cases. In two of those problems (AC, ML′ for n = 10), our values
were the lowest anyway and only in one case (ML′ for n = 5) our value was the
second lowest.

Our final comparison is based on a very recent work by Mongeau et al. [17],
who compared the efficiency of public domain software for global minimization,
i.e. Adaptive Simulated Annealing (ASA), clustering algorithm GLOBAL, ge-
netic algorithm GAS, multilevel random search GOT, integral global optimiza-
tion INTGLOB, and interactive system for universal functional optimization
(UFO). We compare the results of the two highest dimensional functions: pro-
tein folding energy minimizations in 15 (pf5) and 18 dimensions (pf6). Table 3
indicates that SIH is comparable to UFO (variant with the best results) and
outperformed all others.

Table 3. Comparisons for minimization of protein folding functions pf5 and pf6
as defined in [17]. Displayed is the number of function evaluations required to
attain the minima -9.10 for pf5 and -12.71 for pf6. Algorithms which did not
reach the minima in 17000 function evaluations for pf5 and 25000 for pf6, are
marked by N.R.

F (x) n SIH UFO INTGLOB ASA GLOBAL GOT GAS
pf5 15 1336 1300 12200 N.R. 13700 N.R. N.R.
pf6 18 6256 7700 N.R. N.R. 22300 N.R. N.R.
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4 Concluding Remarks

The developed algorithm takes advantage of the well-known and liked Nelder-
Mead simplex minimization and of inductive search, the novel idea of searching
from the simple (e.g., minimizing one dimensional correlate of the function)
to the complex (e.g., minimizing full n-dimensional function). Inductive search
requires that the object function can be considered not only as a function of n
variables, but also as a function of n. We have proposed a simple method of how
in the context of minimization this can be achieved, when the objective function
does not have such a property.

Another feature of inductive search is the combination of global searches in
one dimension and subsequent local multidimensional searches. We carried this
idea in Phase 2 of our algorithm by employing global 2-dimensional searches and
local n-dimensional searches. Phase 2 proved being necessary in some difficult
cases.

While the current tests have shown that our algorithm is quite efficient,
obviously more extensive testing, especially in scientific applications, should be
performed. For difficult problems we anticipate that Phase 2 should be repeated
several times, each time with different starting simplexes.
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17. Mongeau, M., Karsenty, H., Rouzé, V., Huriart-Urruty, J.-B.: Comparison of

Public-domain Software for Black Box Global Optimization. Optim. Meth. and
Software 13 (2000) 203–226


	Introduction
	The Algorithm
	Testing and Comparisons
	Concluding Remarks

