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Abstract. The paper describes the comparison of three evolutionary
algorithms for solving combinatorial optimization problems. In particu-
lar, a generational, a steady-state and a cellular genetic algorithm were
applied to the maximum cut problem, the error correcting code design
problem, and the minimum tardy task problem. The results obtained in
this work are better than the ones previously reported in the literature in
all cases except for one problem instance. The high quality results were
achieved although no problem-specific changes of the evolutionary algo-
rithms were made other than in the fitness function. The constraints for
the minimum tardy task problem were taken into account by incorporat-
ing a graded penalty term into the fitness function. The generational and
steady-state algorithms yielded very good results although they sampled
only a tiny fraction of the search space.

1 Introduction

In many areas, such as graph theory, scheduling and coding theory, there are
several problems for which computationally tractable solutions have not been
found or have shown to be non-existent [12]. The polynomial time algorithms
take a large amount of time to be of practical use. In the past few years, sev-
eral researchers used algorithms based on the model of organic evolution as an
attempt to solve hard optimization and adaptation problems. Due to their rep-
resentation scheme for search points, Genetic Algorithms (GA) are the most
promising and easily applicable representatives of evolutionary algorithms for
the problems discussed in this work.

The goal of this work is two-fold. First, a performance comparison of
three evolutionary algorithms for solving combinatorial optimization problems
is made. These algorithms are the generational genetic algorithm (genGA), the
steady-state genetic algorithm (ssGA) [13], and the cellular genetic algorithm
(cGA) [8]. Second, the paper reports the improvement achieved on already known
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results for similar problem instances. We compare the results of our experiments
to those of [2] and [6].

The outline of the paper is as follows: Section 2 presents a short overview of
the basic working principles of genetic algorithms. Section 3 presents the maxi-
mum cut problem, the error correcting code design problem, and the minimum
tardy task problem. The problem’s encoding, the fitness function, and other spe-
cific particularities of the problem are explained. The experimental results for
each problem instance are described in Section 4. The paper summarizes our
findings in Section 5.

2 The Evolutionary Algorithms

Our genGA, like most GA described in the literature, is generational. At each
generation, the new population consists entirely of offspring formed by parents
in the previous generation (although some of these offspring may be identical to
their parents). In steady-state selection [13], only a few individuals are replaced
in each generation. With ssGA, the least fit individual is replaced by the off-
spring resulting from crossover and mutation of the fittest individuals. The cGA
implemented in this work is an extension of [10]. Its population is structured in
a toroidal 2D grid and the neighborhood defined on it always contains 5 strings:
the one under consideration and its north, east, west, and south neighboring
strings. The grid is a 7 × 7 square. Fitness proportional selection is used in the
neighborhood along with the one–point crossover operator. The latter yields only
one child: the one having the larger portion of the best parent. The reader is
referred to [1] for more details on panmictic and structured genetic algorithms.

As expected, significant portions of the search space of some of the problem
instances we tackle are infeasible regions. Rather than ignoring the infeasible re-
gions, and concentrating only on feasible ones, we do allow infeasibly bred strings
to join the population, but for a certain price. A penalty term incorporated in
the fitness function is activated, thus reducing the infeasible string’s strength
relative to the other strings in the population. We would like to point out that
the infeasible string’s lifespan is quite short. It participates in the search, but is
in general left out by the selection process for the succeeding generation.

3 Combinatorial Optimization Problems

In this paper, we apply three evolutionary algorithms to instances of differ-
ent NP-complete combinatorial optimization problems. These are the maximum
cut problem the error correcting code design problem, and the minimum tardy
task problem. These problems represent a broad spectrum of the challenging
intractable problems in the areas of graph theory [9], coding theory [7], and
scheduling [4]. All three problems were chosen because of their practical use and
the existence of some preliminary work in applying genetic algorithms to solve
them [2], [3], and [6].
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The experiments for graph and scheduling problems are performed with dif-
ferent instances. The first problem instance is of moderate size, but nevertheless,
is a challenging exercise for any heuristic. While the typical problem size for the
first instance is about twenty, the subsequent problem instances comprise of pop-
ulations with strings of length one hundred and two hundred, respectively. In the
absence of test problems of significantly large sizes, we proceed by introducing
scalable test problems that can be scaled up to any desired large size, and more
importantly, the optimal solution can be computed. This allows us to compare
our results to the optimum solution, as well as to the existing best solution (using
genetic algorithms). As for the error correcting code design problem, we confine
the study to a single complex problem instance.

3.1 The Maximum Cut Problem

The maximum cut problem consists in partitioning the set of vertices of a
weighted graph into two disjoint subsets such that the sum of the weights of
the edges with one endpoint in each subset is maximized. Thus, if G = (V, E)
denotes a weighted graph where V is the set of nodes and E the set of edges,
then the maximum cut problem consists in partitioning V into two disjoint sets
V0 and V1 such that the sum of the weights of the edges from E that have one
endpoint in V0 and the other in V1, is maximized. This problem is NP-complete
since the satisfiability problem can be polynomially transformed into it [5].

We use a binary string (x1, x2, . . . , xn) of length n where each digit corre-
sponds to a vertex. Each string encodes a partition of the vertices. If a digit is
1 then the corresponding vertex is in set V1, if it is 0 then the corresponding
vertex is in set V0. Each string in {0, 1}n represents a partition of the vertices.
The function to be maximized is:

f(x) =
n−1∑

i=1

n∑

j=i+1

wij · [xi(1 − xj) + xj(1 − xi)] . (1)

Note that wij contributes to the sum only if nodes i and j are in different
partitions.
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Fig. 1. Example of a maximum cut for the graph structure proposed for generating
test examples. The problem size is n = 10, the maximum cut value is f∗ = 87.
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In this work, we consider the randomly generated sparse graph “cut20-0.1”
and the randomly generated dense graph “cut20-0.9” found in [6]. In order to
obtain larger problem instances, we make use of the scalable weighted graph with
n = 10 nodes shown in Figure 1a. The cut-set that yields the optimal solution
can be computed from the construction. The dotted line partition of Figure 1b
is represented by the bit string 0101001010 (or its complement) with objective
function value f∗ = 87 and yields the optimum cut-set.

This graph can be scaled up, for any even value of n, to form arbitrarily large
graphs with the same structure and an even number of nodes. The construction
of a graph with n nodes consists in adding vertex pairs at the bottom of the
graph and connecting them vertically by one edge of weight 1 per vertex and
diagonally by one edge of weight 10 per vertex. According to this construction,
the optimal partition is easily described by the concatenation of a copy of the
n/4-fold repetition of the bit pattern 01, followed by a 0, then another copy of the
n/4-fold repetition of the bit pattern 01, and finally a 0. Alternatively, one could
take the complement of the described string. The string has objective function
value f∗ = 21+11 · (n−4) for n ≥ 4. One might be tempted to believe that such
regularity in the formulation of the problem instance might favor the workings of
genetic algorithms. In order to defuse any doubts, we introduce a preprocessing
step which consists in randomly renaming the vertices of the problem instance.
As a consequence, consecutive bit positions no longer correspond to vertices that
are close to each other within the graph itself.

For the experiments reported here, a graph of size n = 100, “cut100”, is used.

3.2 The Error Correcting Code Design Problem

The error correcting code design problem (ECC) consists of assigning codewords
to an alphabet that minimizes the length of transmitted messages and that
provides maximal correction of single uncorrelated bit errors, when the messages
are transmitted over noisy channels. Note that the two restrictions are conflicting
in nature. On one hand, we would like to assign codewords that are as short as
possible, and on the other hand, good error correction is achieved by adding
redundant bits so as to maximize the Hamming distance between every pair of
codewords.

This study considers binary linear block codes. Such codes can be formally
represented by a three-tuple (n, M, d), where n is the length (number of bits) of
each codeword, M is the number of codewords and d is the minimum Hamming
distance between any pair of codewords. An optimal code consists in constructing
M binary codewords, each of length n, such that d, the minimum Hamming
distance between each codeword and all other codewords, is maximized. In other
words, a good (n, M, d) code has a small value of n (reflecting smaller redundancy
and faster transmission), a large value for M (denoting a larger vocabulary) and
a large value for d (reflecting greater tolerance to noise and error). As n increases,
the search space of possible codes grows exponentially.

Linear block codes can either be polynomially generated, such as the Bose,
Chaudhuri, and Hocquenghem (BCH) codes [7], or non-polynomially generated,
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by using some heuristic. Genetic algorithms can be used to design such codes [3].
Other researchers have used hybrids (e.g., simulated annealing and genetic al-
gorithms) and parallel algorithms to achieve good codes [2].

In this study, we consider a problem instance that was tackled by [2], where
n = 12 and M = 24, and use their fitness function with all three evolutionary
algorithms. However, we do not parallelize our genetic algorithms, as is the case
in their work. The function to be minimized is:

f(C) =
1

∑M
i=1

∑M
j=1;i 6=j

1
d2

ij

(2)

where dij represents the Hamming distance between codewords i and j in the
code C (of n codewords, each of length M).

Note that for a code where n = 12 and M = 24, the search space is of size(4096
24

)
, which is approximately 1087. It can be shown that the optimum solution

for n = 12 and M = 24 has a fitness value of 0.0674. The optimum solution is
illustrated in [2].

3.3 The Minimum Tardy Task Problem

The minimum tardy task problem is a task-scheduling problem. It is NP-
complete since the partitioning problem can be polynomially transformed into
it [5]. The following is a formal definition of the minimum tardy task prob-
lem [12]:

Problem instance:
Tasks: 1 2 . . . n , i > 0
Lengths: l1 l2 . . . ln , li > 0
Deadlines: d1 d2 . . . dn , di > 0
Weights: w1 w2 . . . wn , wi > 0

Feasible solution: A one-to-one scheduling function g defined on S ⊆ T , g :
S −→ Z+ ∪ {0} that satisfies the following conditions for all i, j ∈ S:
1. If g(i) < g(j) then g(i) + li ≤ g(j) which insures that a task is not

scheduled before the completion of an earlier scheduled one.
2. g(i)+ li ≤ di which ensures that a task is completed within its deadline.

Objective function: The tardy task weight W =
∑

i∈T−S wi, which is the
sum of the weights of unscheduled tasks.

Optimal solution: The schedule S with the minimum tardy task weight W.

A subset S of T is feasible if and only if the tasks in S can be scheduled in
increasing order by deadline without violating any deadline [12]. If the tasks are
not in that order, one needs to perform a polynomially executable preprocessing
step in which the tasks are ordered in increasing order of deadlines, and renamed
such that d1 ≤ d2 ≤ · · · ≤ dn.

A schedule S can be represented by a vector x = (x1, x2, . . . , xn) where
xi ∈ {0, 1}. The presence of task i in S means that xi = 1, while its absence
is represented by a value of zero in the ith component of x. We use the fitness
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function described in [6] which allows infeasible strings and uses a graded penalty
term.

For our experiments, we use three problem instances: “mttp20” (of size 20),
“mttp100” (of size 100) and “mttp200” (of size 200). The first problem instance
can be found in [6]. The second and third problem instances were generated by
using a scalable problem instance introduced in [6].

4 Experimental Runs

We performed a total of 100 experimental runs for each of the problem instances.
Whenever no parameter setting is stated explicitly, all experiments reported here
are performed with a standard genetic algorithm parameter setting: Population
size µ = 50, one-point crossover, crossover rate pc = 0.6, bit-flip mutation, muta-
tion rate pm = 1/n (where n is the string length), and proportional selection. All
three algorithms were run on a uniprocessor machine. These were the settings
used with the same problem instances reported in [2] and [6].

What follows is the convention used to present the results of the experimental
runs. The first column for each evolutionary algorithm gives the best fitness
value encountered during the 100 runs. The second column for each evolutionary
algorithm records the number of times each one of these values is attained during
the 100 runs. The values given in the first row of the table are the average number
of iterations it took to obtain the maximum value. The first value recorded under
f(x) is the globally optimal solution. For example, Table 1 reports that genGA
obtained the global optimal (whose value is 10.11981) ninety two times out of
the 100 runs. The table also indicates that the optimum value was obtained after
2782.1 iterations when averaged over the 100 runs.

4.1 Results for the Maximum Cut Problem

Table 1. Overall best results of all experimental runs performed for “cut20-01”.

ssGA genGA cGA
avg = 626.4 avg = 2782.1 avg = 7499

f(x) N f(x) N f(x) N

10.11981 79 10.11981 92 10.11981 16
9.76 21 10.05 1 10.0 24

10.0 1 9.765 53
9.89 1 9.76 7
9.76 5

We notice that genGA performs better than ssGA for the sparse graph (see
Table 1), while ssGA gives better results for the dense graph (see Table 2).
Due to the very small population size (n = 50), in which neighborhoods cannot
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develop properly, the cGA did not produce results as good as the two other
algorithms. In other words, we believe that with such a small population size,
cGA is still mainly in the exploration stage rather than the exploitation stage.
As for “cut100”, all three algorithms were unable to find the global optimum.
When compared to [6], our ssGA and genGA performed better for the sparse
and dense graphs. As for “cut100”, our algorithms were not able to improve on
the results of [6].

Overall, these are good results especially when we realize that the evolution-
ary algorithms explore only about 1% of the search space.

Table 2. Overall best results of all experimental runs performed for “cut20-0.9”.

ssGA genGA cGA
avg = 2007.1 avg = 4798 avg = 7274

f(x) N f(x) N f(x) N

56.74007 72 56.74007 50 56.74007 2
56.04 10 56.73 19 56.5 12
55.84 16 56.12 12 55.5 59
55.75 2 56.04 9 54.5 24

55 10 53.5 3

Table 3. Overall best results of all experimental runs performed for “cut100”.

ssGA genGA cGA
f(x) N f(x) N f(x) N

1077 0 1077 0 1077 0
1055 9 1055 0 1055 0
1033 19 1033 8 1033 4
1011 36 1011 9 1011 11
989 22 989 14 989 8
967 7 967 9 967 4

≤ 945 7 ≤ 945 60 ≤ 945 73

4.2 Results for the ECC Problem

For the ECC problem, ssGA outperformed both genGA and cGA. For this prob-
lem instance, cGA produced results comparable to those of ssGA. But as can be
seen from the average values in Table 4, ssGA is substantially faster than cGA.
Our algorithms performed better than the one reported in [2]. We believe that
our algorithms outperformed theirs mainly because we used symmetric encod-
ing, where once a string is processed, we assume that its complement too has
been taken care of, thus producing substantial time savings.

4.3 Results for the Minimum Tardy Task Problem

We notice that while ssGA outperforms the two other heuristics for the 20-task
problem instance, genGA gives much better results for the 100-task and 200-task
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problems. For “mttp20”, the local optimum of 46 differs from the global one by
a Hamming distance of three. Compared to the results of [6] for “mttp20”, ssGA
performs much better, genGA is comparable, while cGA’s performance is worse.

With “mttp100”, the global optimum (200) is obtained with the unique string
composed of 20 concatenations of the string b=11001. The second best solution
of 243, is obtained by the strings that have 11000 as prefix (with tasks three,
four and five contributing a total of 60 units towards the fitness value). This
prefix is followed by the substring 11101 (contributing 3 units towards the fitness
value) and 18 copies of b=11001 (each contributing 10 units towards the fitness
value). Since there are 19 ways of placing 11101 among the 18 substrings 11001,
there are 19 strings of quality 243 (60 + 3 + (18 × 10)). A second accumulation
of results is observed for the local optimum of 329, which is obtained by the
schedule represented by the string with prefix: 001001110111101. The string is
then completed by concatenating 17 copies of b=11001. This string too is unique.
Compared to the results reported in [6] for “mttp100”, both ssGA and genGA
significantly outperform them. Once more, cGA lags behind.

For “mttp200”, genGA is a clear winner among the three evolutionary algo-
rithms. This problem instance was not attempted by [6].

Table 4. Overall best results of all experimental runs performed for the ECC problem
instance.

ssGA genGA cGA
avg = 7808 avg = 35204 avg = 30367
f(x) N f(x) N f(x) N

0.067 40 0.067 22 0.067 37
0.066 0 0.066 11 0.066 1
0.065 17 0.065 18 0.065 21
0.064 25 0.064 33 0.064 27
0.063 13 0.063 16 0.063 13
0.062 5 0.062 0 0.062 1

Table 5. Overall best results of all experimental runs performed for “mttp20”.

ssGA genGA cGA
avg = 871.4 avg = 2174.7 avg = 7064.2
f(x) N f(x) N f(x) N

41 86 41 73 41 23
46 10 46 11 46 7
51 4 49 8 49 9

51 3 51 9
56 1 53 6
57 1 54 1
61 1 56 12
65 2 ≥ 57 33
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Table 6. Overall best results of all experimental runs performed for “mttp100”.

ssGA genGA cGA
avg = 43442 avg = 45426 avg = 15390
f(x) N f(x) N f(x) N

200 78 200 98 200 18
243 4 243 2 243 18
326 1 276 2
329 17 293 6

316 1
326 1
329 37
379 9

≥ 429 8

Table 7. Overall best results of all experimental runs performed for “mttp200”.

ssGA genGA cGA
avg = 288261.7 avg = 83812.2 avg = 282507.3
f(x) N f(x) N f(x) N

400 18 400 82 400 6
443 8 443 9 443 7
476 2 476 2 493 1
493 1 493 2 529 34
516 1 496 1 543 1
529 42 529 3 579 10
579 3 629 1 602 1
602 1 629 8
665 23 665 17
715 1 ≥ 679 15

5 Conclusion

This work explored the applications of three evolutionary algorithms to combina-
torial optimization problems. The algorithms were the generational, the steady-
state and the cellular genetic algorithm. The primary reason behind embarking
on the comparison testing reported in this work was to see if it is possible to
predict the kind of problems to which a certain evolutionary algorithm is or is
not well suited. Two algorithms, ssGA and genGA, performed very well with the
maximum cut problem, the error correcting code design problem and the tardy
task scheduling problem. The third algorithm, namely cGA, usually lagged be-
hind the other two. For all problem instances except one, genGA and ssGA
outperformed previously reported results.

Overall, our findings confirm the strong potential of evolutionary algorithms
to yield a globally optimal solution with high probability in reasonable time, even
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in case of hard multimodal optimization tasks when a number of independent
runs is performed.

We subscribe to the belief that one should move away from the reliance on
individual problems only in comparing the performance of evolutionary algo-
rithms [11]. We believe researchers should instead create test problem genera-
tors in which random problems with certain characteristics can be generated
automatically and methodically. Example characteristics include multimodal-
ity, epistasis, the degree of deception, and problem size. With this alternative
method, it is often easier to draw general conclusions about the behavior of an
evolutionary algorithm since problems are randomly created within a certain
class. Consequently, the strengths and weaknesses of the algorithms can be tied
to specific problem characteristics.

It is our belief that further investigation into these evolutionary algorithms
will demonstrate their applicability to a wider range of NP-complete problems.
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