
VisBench: A Framework for Remote Data
Visualization and Analysis

Randy W. Heiland, M. Pauline Baker, and Danesh K. Tafti

NCSA, University of Illinois at Urbana-Champaign,
Urbana, Illinois

{heiland, baker, dtafti}@ncsa.uiuc.edu

Abstract. Computational researchers typically work by accessing a
compute resource miles from their desk. Similarly, their simulation out-
put or other data is stored in remote terabyte data servers. VisBench
is a component-based system for visualizing and analyzing this remote
data. A time-varying CFD simulation of heat exchange over a louvered
fin provides sample data to demonstrate a workbench-oriented version
of VisBench. An analysis technique (POD) for spatiotemporal data is
described and applied to the CFD data.

1 Introduction

Computational and experimental scientists routinely access remote resources
necessary for their research. While it was once customary for a researcher to
download remote data to a local workstation in order to visualize and analyze
it, this scenario is usually impractical today. Data files have become too large and
too numerous from a typical simulation run at a high-performance computing
center. This has led to data being stored in terabyte servers located at the HPC
sites.

Experimental scientists face the same dilemma of burgeoning remote data.
For example, the Sloan Digital Sky Survey has already captured nearly two years
worth of data and the Large Hadron Collider at CERN and National Ignition
Facility at LLNL will each produce vast amounts of data when they become fully
operational.

The goal of the NSF PACI program is to build the Grid[1] – a distributed,
metacomputing environment connected via high-speed networks, along with the
necessary software to make it usable by researchers. As part of this effort, we
present a software framework that is being used to remotely visualize and analyze
data stored at NCSA.

Some goals of our project, called VisBench, include:

– minimize data movement,
– take advantage of (remote) HPC resources for visualization and analysis,
– provide application-specific workbench interfaces and offer a choice of clients,

ranging from lightweight (run anywhere) to more specialized,
– be prudent of the cost of necessary software.

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 718–727, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

VisBench: A Framework for Remote Data Visualization and Analysis 719

The notion of an application-specific workbench means offering high-level func-
tionality that is pertinent to an application domain. We will demonstrate this
with an analysis technique that VisBench offers through its CFD interface. The
last goal stems from the fact that, as leading-edge site of the Alliance1, NCSA
will make software recommendations to our partners.

We now present an overview of VisBench, followed by an example of it being
used to visualize and analyze remote CFD data.

2 VisBench: A Component-Based Workbench

VisBench adopts the software component model whereby application compo-
nents are connected in a distributed object fashion. This model allows us to
“plug-in” various software components – taking advantage of their individual
strengths. A component may be anything from a small piece of code that per-
forms one specific function to an entire software package that provides extensive
functionality.

We have initially taken a coarse-grained approach; our framework consists of
just a few, large components. In this paper we will present just three: a general-
purpose visualization component, a general-purpose data analysis component,
and a graphical user interface component. For visualization, we use an open
source software package called the Visualization Toolkit (VTK)[2]. VTK is a
relative newcomer in the visualization community and is being rapidly adopted
by many groups. For data analysis, we use MATLAB, a commercial software
package that has been in existence for over twenty years. For the user interface,
we have written a graphical user interface (GUI) client using Java Swing.

In order to connect these different components together and have them easily
interoperate, one needs middleware. We have initially chosen CORBA as the
middleware for VisBench. Figure 1 shows a schematic of the VisBench framework
discussed in this paper.

2.1 Visualization

We selected VTK as our core visualization component for a number of reasons.
As a modern object-oriented software package (written in C++), it offers over
600 classes that perform numerous 2-D and 3-D visualization algorithms, ren-
dering, and interaction techniques. The quality of example renderings, especially
for scientific datasets, and the ability to interact in 3-D were important factors.
So too was its ability to stream very large datasets through various filters within
a visualization pipeline. Its open source model allows for valuable contributions
from users. For example, a group at LANL has provided extensions for paral-
lel filters using MPI. The Stanford Graphics group will be offering a parallel
rendering version of VTK, and the Vis&VE group at NCSA has provided func-
tionality for easily using VTK in the CAVE – a future VisBench client. The level
of activity and excitement within the VTK community is very encouraging.
1 National Computational Science Alliance, one of two partnerships within PACI

720 R.W. Heiland, M.P. Baker, and D.K. Tafti

HPC components (servers)

client
Java

(MATLAB)

Analysis
(VTK)
Vis

CORBA

Service
Naming

Fig. 1. VisBench design and some existing components

One feature lacking in the VTK distribution is a graphical user interface.
There is, however, an option to automatically wrap each class in the Python
or Tcl scripting language. Our visualization component (server) consists of an
embedded Python interpreter that has access to all the VTK classes, provid-
ing a mechanism for dynamically constructing a visualization pipeline. A Vis-
Bench user does not need to know the Python language though. The Java GUI
(client) transparently converts all actions into appropriate Python-VTK com-
mands. This has the added benefit of generating a script, associated with an
interactive session, which can then be run in batch mode if necessary.

2.2 Data Analysis

The MATLAB software package is familiar to nearly every scientist and engi-
neer who performs numerical calculations. It has earned wide respect and is
trusted for its numerical accuracy. Using its Application Program Interface, we
have written a core analysis component for VisBench. As with the visualization
component, the intent is to provide high level point-and-click workbench-related
functionality. Of course, if users are capable of writing their own MATLAB
scripts, these too can be entered via VisBench and executed on the remote anal-
ysis server.

Besides providing extensive core mathematical functionality, MATLAB has
another distinct advantage over similar systems – there are numerous, freely
available scripts that cover nearly every application domain. It is straightforward
to incorporate such scripts into VisBench.

2.3 User Interface

In order to make the remote VisBench engines accessible to users working on
a wide variety of platforms, our primary VisBench client is written in Java.
The client makes extensive use of the Java Swing package for the graphical user
interface. A sample VisBench session would proceed as follows:

VisBench: A Framework for Remote Data Visualization and Analysis 721

– from the client, connect to a running server (a factory server that forks off
a separate server for each user),

– using a Reader widget, read a (remote) data file; associated metadata will
be displayed in the widget,

– create filters for the data – for example, slicing planes, isosurfaces, stream-
lines, vector glyphs, etc.,

– geometry associated with the filters is rendered on the back-end VTK server
and the resulting image compressed and sent back to the client where it gets
displayed,

– interactively view the results and make necessary changes.

An example of the CFD workbench interface is shown in Figure 2. This Java
client is a very lightweight client. One needs only a Java Virtual Machine in
order to run it. (The Java 2 platform is required since we use the Swing package
and the CORBA bindings).

Workbench interfaces are being designed as a collaborative effort between
application scientists and computer scientists. We envision these workbenches
evolving into problem-solving environments.

Fig. 2. An example of the CFD Java client

2.4 Middleware

Middleware is the software that allows distributed objects to communicate and
exchange data with each other. There are three mainstream middleware so-

722 R.W. Heiland, M.P. Baker, and D.K. Tafti

lutions: COM, CORBA, and JavaBeans. COM (Component Object Model) is
from Microsoft and is intended for Windows platforms and applications. CORBA
(Common Object Request Broker Architecture) is a vendor-independent speci-
fication defined by a not-for-profit consortium, the Object Management Group.
JavaBeans, from Sun, is for Java platforms and applications.

We chose CORBA as the middleware for VisBench for two primary reasons.
It provides language interoperability – something quite valuable in scientific com-
puting where there is a mix of Fortran, C/C++, and, with growing frequency,
Java. It makes the most sense based on our current high-end hardware archi-
tectures and operating systems – primarily IRIX and Linux. We selected the
ACE ORB (TAO), an open source university research project, as our CORBA
implementation. An Object Request Broker (ORB) provides a mechanism for
transparently communicating requests from a client to a servant object. Within
the scope of VisBench that is being presented here, there are only two servant
objects – the VTK and MATLAB components.

The interfaces to CORBA objects are specified using the Interface Definition
Language (IDL). The IDL is independent of any programming language and
allows for applications in different languages to interoperate. The IDL for a
particular object contains the interfaces (methods) for its operations.

CORBA provides the specifications for a number of different services. The
most commonly used is the Naming Service. The Naming Service provides a
mechanism for mapping object names to object references. A servant object
“advertises” itself via the Naming Service. A client then connects to the Naming
Service, obtains object references, and invokes operations on those objects.

VisBench has less communication overhead than other HPC distributed com-
ponent models. In the Common Component Architecture[3], for example, the
goal is to construct a distributed computational pipeline requiring the transmis-
sion of large amounts of data. The current VisBench model assumes that the
simulation (or experimental) data will be directly accessible from the machine
hosting the VisBench server and that a relatively small amount of visualization,
analysis, or user data will be exchanged between client and server.

3 POD Analysis

When trying to understand spatiotemporal data, visualization – especially an
animation, is an extremely useful tool. However, sometimes one needs more
quantitative information – for example, when trying to compare results from a
parameter study.

We present a fairly complex analysis technique that is sometimes used in CFD
research – particularly in the study of turbulence. The technique has its roots
in statistics and is based on second-order statistical properties that result in a
set of optimal eigenfunctions. In certain application domains, the algorithm is
known as the Karhunen-Loève decomposition. Lumley[4] pioneered the idea that
it be used to analyze data from turbulent flow simulations and suggested that it
could provide an unbiased identification of coherent spatial structures. Within

VisBench: A Framework for Remote Data Visualization and Analysis 723

this context, the algorithm is known as the proper orthogonal decomposition
(POD).

We use the POD as an example of providing high-level analysis functionality
in the VisBench environment. Because of its computational demands, the POD is
most often used for analyzing only 1-D or 2-D time-varying data. Since VisBench
provides an analysis component running on a remote HPC resource, we will
demonstrate the POD on time-varying 3-D data. An outline of the algorithm is
presented.

Assume we are given a set of numeric vectors (real or complex):

{Xi}M
i=1

where X = [x1, x2, . . . , xN].
The mean is computed as:

X =
1
M

M∑
i=1

Xi

Hence, if we have a time series of spatial vectors, the mean will be the time
average.

We shall operate on a set of caricature vectors with zero mean:

X̂i = Xi − X, i = 1, . . . , M

Using the method of snapshots[5], we construct an approximation to a sta-
tistical covariance matrix:

Cij = 〈X̂i, X̂j〉, i, j = 1, . . . , M

where 〈·, ·〉 denotes the usual Euclidean inner product.
We then decompose this M × M symmetric matrix, computing its (non-

negative) eigenvalues, λi, and its eigenvectors, φi, i = 1, . . . , M , which form a
complete orthogonal set.

The orthogonal eigenfunctions of the data are defined as:

Ψ [k] =
M∑
i=1

φ
[k]
i X̂i, k = 1, . . . , M

where φ
[k]
i is the i-th component of the k-th eigenvector. It is these eigenfunctions

which Lumley refers to as coherent structures within turbulent flow data.
The energy of the data is defined as the sum of the eigenvalues of the covari-

ance matrix:

E =
M∑
i=1

λi

724 R.W. Heiland, M.P. Baker, and D.K. Tafti

Taking the ratio of an eigenvalue (associated with an eigenfunction) to the total
energy, we calculate an energy percentage for each eigenfunction.

Ek =
λk

E

Sorting the eigenvalues (and associated eigenvectors) from largest to smallest,
we can order the eigenfunctions from most to least energetic. In a data mining
context, we refer to the plot of descending eigenfunction energy percentages as a
quality of discovery plot. Ideally, one wants just a few eigenfunctions that cumu-
latively contain most of the energy of the dataset. This would be an indication
that these eigenfunctions, or coherent structures, are a good characterization
of the overall data. (In a dynamical systems context, this would constitute a
relatively low-dimensional phase space of the given system).

Furthermore, since the eigenfunctions span the space of the given data, it is
possible to reconstruct an approximation to any given vector as:

X ≈ X +
K∑

i=1

aiΨ
[i]

taking the first K(K < M) most energetic eigenfunctions, where the coefficients
are computed by projecting the caricature vectors onto the eigenfunctions:

ai =

(
X̂ · Ψ [i]

Ψ [i] · Ψ [i]

)

The POD has been used to analyze near wall turbulence and other PDE
simulations[6][7], as well as experimental data.

4 Example: Turbulent Flow Over Fins

A HPC simulation of turbulent flow and heat transfer over a multilouvered
fin[8] provides a source of example data for demonstrating VisBench. Figure 3a
shows the multilouvered fin model. The flow is from left-to-right, i.e., hitting
the leading (upper) edge of a fin and traveling down to the trailing edge. For
the simulation, the computational domain is comprised of one-half of one full fin
(due to symmetry) and the region around it, as shown in Figure 3b. It is periodic
back-to-front (leading-edge boundary to trailing-edge boundary) and bottom-to-
top. There is a wall at the flat base where much of the heat is retained.

The computational domain consists of a topologically regular grid which
follows the geometry of the fin – having higher resolution in the area of interest
(at the twisted junction). The grid size is 98 × 98 × 96 for this particular model.

The simulation writes files of computed values at regular time intervals. From
the VisBench client, a user selects some subset (M) of these remote files, repre-
senting a particular regime of the simulation. The user then selects a particular
scalar or vector field within each file and, after connecting to an analysis server,

VisBench: A Framework for Remote Data Visualization and Analysis 725

Fig. 3. a) The multilouvered fin and b) the computational domain

initiates the POD analysis. We have currently analyzed the temperature, pres-
sure, streamwise vorticity, and velocity fields.

Figure 4 shows the results of applying the POD to the temperature field
(for M ≈ 200). The mean is shown at the top followed by the first three most
energetic eigenfunctions. The first eigenfunction contained 32% of the energy,
the second, 12%, and the third, 8%.

The first eigenfunction reveals “hot-spots” along the flat base (top and bot-
tom), a circular region near the upper part of the top, and two streaks along the
length of the bottom of the fin. The second eigenfunction visually appears to be
orthogonal to the first (which it is, mathematically) – the base of the fin is now
“cool” and there is a hot-spot near the upper region of the twisted junction (both
top and bottom). Although we show only the surface of the fin (color-mapped
with temperature), it should be noted that the analysis was indeed performed
over the entire 3-D domain and has been visualized using various filters.

By encapsulating the POD algorithm in the analysis component, interactive
viewing from the visualization component, and relevant graphical controls from a
client, we have illustrated how VisBench can serve as an application workbench.

5 Summary

We have presented a framework for performing visualization and analysis of re-
mote data. The VisBench model consists of a variety of servers running on remote
HPC machines with access to data archived on those machines. An application-
dependent (workbench) client with a graphical user interface can simultaneously
communicate with different servers via CORBA. We have shown a Java client
used for visualizing and analyzing CFD data. The client is lightweight in that it
requires only the Java 2 runtime environment. The amount of data exchanged
between client and visualization server is minimal – GUI-generated command
strings to the server and compressed (JPEG) images to the client.

An earlier version of VisBench was demonstrated at Supercomputing ’99 –
a Java client on the show floor in Portland visualizing CFD data at NCSA. In
addition, VisBench and Condor (www.cs.wisc.edu/condor) teamed together to

726 R.W. Heiland, M.P. Baker, and D.K. Tafti

Fig. 4. POD results of temperature on fin (top and bottom)

VisBench: A Framework for Remote Data Visualization and Analysis 727

demonstrate frame-based parallel rendering using the Grid. At Supercomputing
’00 in Dallas, we demonstrated both the Java client (for a Chemical Engineering
workbench) and a geometry client that received geometry from a VisBench server
(at NCSA) and displayed it locally on a tiled wall.

We have not yet collected performance data for the different scenarios that
VisBench offers. The visualization server that typically runs at NCSA (a mul-
tiprocessor SGI Onyx) takes advantage of hardware rendering and has shown a
50x speedup over software rendering. This is highly desirable for an image-based
client, such as the Java client presented here or a client in a web browser. To
offer an idea of performance for the Java client, the rendering in Figure 2 would
update at about 2 frames/second at the Supercomputing conferences. For a ge-
ometry client, the rendering speed will be determined by the client machine’s
hardware. Obviously, VisBench will always be network limited. We have not yet
incorporated parallel VTK filters into the visualization server, nor are we using
parallel rendering. These two areas will receive more attention as we transition
to Linux clusters. The analysis component is still considered proof of concept
and the POD implementation, in particular, needs to be optimized.

Much of our effort has gone toward providing utilities that the application
scientists have requested – remote file selection, animation, camera path editing,
and providing VRML files on the server machine (which doubles as a web server).

We acknowledge the help of many members, past and present, of the NCSA
Vis&VE group, as well as members of the Condor team, the Alliance Chem-
ical Engineering team, and the Extreme! Computing team at Indiana Univer-
sity. For more information on VisBench, we refer readers to the web page at
visbench.ncsa.uiuc.edu.

References

1. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infras-
tructure. Morgan-Kaufmann, San Francisco (1998)

2. Schroeder, W., Martin, K., Lorensen, W.: The Visualization Toolkit: An Object-
Oriented Approach to 3D Graphics, 2nd ed.. Prentice-Hall, Old Tappan, N.J. (1998)

3. Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L., Parker, S.,
Smolinski, B.: Toward a Common Component Architecture for High-Performance
Scientific Computing. Proceedings of the Eighth IEEE International Symposium on
High Performance Distributed Computing (1999) 115-124

4. Lumley, J.L.: The structure of inhomogeneous turbulent flow. In: Yaglom, A.M.,
Tatarski, V.I. (eds.): Atmospheric Turbulence and Radio Wave Propagation 25
(1993) 539-575

5. Sirovich, L.: Turbulence and the dynamics of coherent structures: Part I-III. Quar-
terly of Applied Mathematics, XLV(3) (1987) 561-590

6. Aubry, N., Holmes, P., Lumley, J.L., Stone, E.: The dynamics of coherent structures
in the wall region of a turbulent boundary layer. J. Fluid Mech. 192 (1988) 115-173

7. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the
analysis of turbulent flows. Annual Review of Fluid Mechanics 25 (1993) 539-575

8. Tafti, D.K., Zhang, X., Huang, W., Wang, G.: Large-Eddy Simulations of Flow and
Heat Transfer in Complex Three-Dimensional Multilouvered Fins. Proceedings of
FEDSM2000: 2000 ASME Fluids Engineering Division Summer Meeting (2000) 1-18

	Introduction
	VisBench: A Component-Based Workbench
	Visualization
	Data Analysis
	User Interface
	Middleware

	POD Analysis
	Example: Turbulent Flow Over Fins
	Summary

